scispace - formally typeset
Search or ask a question

Showing papers in "Small in 2015"


Journal ArticleDOI
01 Apr 2015-Small
TL;DR: The properties and synthesis methods of these carbon nanodots are reviewed and emphasis is placed on their biological (both fundamental and theranostic) applications.
Abstract: The emerging graphene quantum dots (GQDs) and carbon dots (C-dots) have gained tremendous attention for their enormous potentials for biomedical applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical properties, high photostability, biocompatibility, and small size. This article aims to update the latest results in this rapidly evolving field and to provide critical insights to inspire more exciting developments. We comparatively review the properties and synthesis methods of these carbon nanodots and place emphasis on their biological (both fundamental and theranostic) applications.

1,665 citations


Journal ArticleDOI
01 Jan 2015-Small
TL;DR: In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovkite solar cells.
Abstract: Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells.

1,111 citations


Journal ArticleDOI
01 Feb 2015-Small
TL;DR: This article reviews this emerging class of 2D elemental materials - silicene, germanene, stanene, and phosphorene--with emphasis on fundamental properties and synthesis techniques and the viability of such elemental 2D materials is highlighted.
Abstract: The fascinating electronic and optoelectronic properties of free-standing graphene has led to the exploration of alternative two-dimensional materials that can be easily integrated with current generation of electronic technologies. In contrast to 2D oxide and dichalcogenides, elemental 2D analogues of graphene, which include monolayer silicon (silicene), are fast emerging as promising alternatives, with predictions of high degree of integration with existing technologies. This article reviews this emerging class of 2D elemental materials - silicene, germanene, stanene, and phosphorene--with emphasis on fundamental properties and synthesis techniques. The need for further investigations to establish controlled synthesis techniques and the viability of such elemental 2D materials is highlighted. Future prospects harnessing the ability to manipulate the electronic structure of these materials for nano- and opto-electronic applications are identified.

748 citations


Journal ArticleDOI
01 Oct 2015-Small
TL;DR: This study provides novel insights into the design and fabrication of high-performance artificial Z-scheme photocatalytic CO(2) reduction to perform photocatalyst reduction to form CH(4) under visible light irradiation.
Abstract: The development of an artificial photosynthetic system is a promising strategy to convert solar energy into chemical fuels. Here, a direct Z-scheme CdS-WO(3) photocatalyst without an electron mediator is fabricated by imitating natural photosynthesis of green plants. Photocatalytic activities of as-prepared samples are evaluated on the basis of photocatalytic CO(2) reduction to form CH(4) under visible light irradiation. These Z-scheme-heterostructured samples show a higher photocatalytic CO(2) reduction than single-phase photocatalysts. An optimized CdS-WO(3) heterostructure sample exhibits the highest CH(4) production rate of 1.02 μmol h(-1) g(-1) with 5 mol% CdS content, which exceeds the rates observed in single-phase WO(3) and CdS samples for approximately 100 and ten times under the same reaction condition, respectively. The enhanced photocatalytic activity could be attributed to the formation of a hierarchical direct Z-scheme CdS-WO(3) photocatalyst, resulting in an efficient spatial separation of photo-induced electron-hole pairs. Reduction and oxidation catalytic centers are maintained in two different regions to minimize undesirable back reactions of the photocatalytic products. The introduction of CdS can enhance CO(2) molecule adsorption, thereby accelerating photocatalytic CO(2) reduction to CH(4). This study provides novel insights into the design and fabrication of high-performance artificial Z-scheme photocatalysts to perform photocatalytic CO(2) reduction.

651 citations


Journal ArticleDOI
Xiaoguang Duan1, Kane M. O'Donnell1, Hongqi Sun1, Yuxian Wang1, Shaobin Wang1 
01 Jul 2015-Small
TL;DR: This study presents a novel metal-free catalyst for green remediation of organic pollutants in water that can effectively break the inertness of carbon systems, activate the sp(2) -hybridized carbon lattice and facilitate the electron transfer from covalent graphene sheets for PMS activation.
Abstract: S ulfur and nitrogen co-doped reduced graphene oxide (rGO) is synthesized by a facile method and demonstrated remarkably enhanced activities in metal-free activation of peroxymonosulfate (PMS) for catalytic oxidation of phenol. Based on fi rst-order kinetic model, S‐N co-doped rGO (SNG) presents an apparent reaction rate constant of 0.043 ± 0.002 min −1 , which is 86.6, 22.8, 19.7, and 4.5-fold as high as that over graphene oxide (GO), rGO, S-doped rGO (S-rGO), and N-doped rGO (N-rGO), respectively. A variety of characterization techniques and density functional theory calculations are employed to investigate the synergistic effect of sulfur and nitrogen co-doping. Co-doping of rGO at an optimal sulfur loading can effectively break the inertness of carbon systems, activate the sp 2 -hybridized carbon lattice and facilitate the electron transfer from covalent graphene sheets for PMS activation. Moreover, both electron paramagnetic resonance (EPR) spectroscopy and classical quenching tests are employed to investigate the generation and evolution of reactive radicals on the SNG sample for phenol catalytic oxidation. This study presents a novel metal-free catalyst for green remediation of organic pollutants in water.

537 citations


Journal ArticleDOI
01 Jul 2015-Small
TL;DR: In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalyststs, and hosts.
Abstract: Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated.

511 citations


Journal ArticleDOI
01 Nov 2015-Small
TL;DR: In a proof-of-concept demonstration for the obtained material's applications, highly efficient photocatalytic activity is achieved by simply hybridizing metallic N-MoS2 with semiconducting CdS nanorods due to the synergistic effect.
Abstract: Most recently, much attention has been devoted to 1T phase MoS2 because of its distinctive phase-engineering nature and promising applications in catalysts, electronics, and energy storage devices. While alkali metal intercalation and exfoliation methods have been well developed to realize unstable 1T-MoS2 , but the aqueous synthesis for producing stable metallic phase remains big challenging. Herein, a new synthetic protocol is developed to mass-produce colloidal metallic 1T-MoS2 layers highly stabilized by intercalated ammonium ions (abbreviated as N-MoS2). In combination with density functional calculations, the X-ray diffraction pattern and Raman spectra elucidate the excellent stability of metallic phase. As clearly depicted by high-angle annular dark-field imaging in an aberration-corrected scanning transmission electron microscope and extended X-ray absorption fine structure, the N-MoS2 exhibits a distorted octahedral structure with a 2a0 × a0 basal plane superlattice and 2.72 A Mo-Mo bond length. In a proof-of-concept demonstration for the obtained material's applications, highly efficient photocatalytic activity is achieved by simply hybridizing metallic N-MoS2 with semiconducting CdS nanorods due to the synergistic effect. As a direct outcome, this CdS:N-MoS2 hybrid shows giant enhancement of hydrogen evolution rate, which is almost 21-fold higher than pure CdS and threefold higher than corresponding annealed CdS:2H-MoS2.

470 citations


Journal ArticleDOI
01 Dec 2015-Small
TL;DR: Novel polymer Composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix, demonstrating that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity.
Abstract: Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

450 citations


Journal ArticleDOI
01 Sep 2015-Small
TL;DR: This review gives an overview of techniques used for high-resolution jet printing that rely on electrohydrodynamically induced flows to provide unique opportunities not only in scientific studies but also in a range of applications that includes printed electronics, tissue engineering, and photonic and plasmonic devices.
Abstract: This review gives an overview of techniques used for high-resolution jet printing that rely on electrohydrodynamically induced flows. Such methods enable the direct, additive patterning of materials with a resolution that can extend below 100 nm to provide unique opportunities not only in scientific studies but also in a range of applications that includes printed electronics, tissue engineering, and photonic and plasmonic devices. Following a brief historical perspective, this review presents descriptions of the underlying processes involved in the formation of liquid cones and jets to establish critical factors in the printing process. Different printing systems that share similar principles are then described, along with key advances that have been made in the last decade. Capabilities in terms of printable materials and levels of resolution are reviewed, with a strong emphasis on areas of potential application.

410 citations


Journal ArticleDOI
01 Nov 2015-Small
TL;DR: Solution-processed Cu2 O and CuO cells show significantly enhanced open circuit voltage Voc, short-circuit current Jsc, and power conversion efficiency compared with PEDOT cells, making Cu2O a promising material for further application in perovskite solar cells.
Abstract: Solution-processed Cu2 O and CuO are used as hole transport materials in perovskite solar cells. The cells show significantly enhanced open circuit voltage Voc, short-circuit current Jsc, and power conversion efficiency (PCE) compared with PEDOT cells. A PCE of 13.35% and good stability are achieved for Cu2O cells, making Cu2O a promising material for further application in perovskite solar cells.

401 citations


Journal ArticleDOI
01 Jan 2015-Small
TL;DR: MoS2 /C nanospheres deliver the best cycling performance of MoS2 for Na-ion batteries to date and the high capacity is attributed to the short ion and electron diffusion pathway, which enables fast charge transfer and low concentration polarization.
Abstract: Molybdenum disulfide (MoS2 ) is a promising anode for high performance sodium-ion batteries due to high specific capacity, abundance, and low cost. However, poor cycling stability, low rate capability and unclear electrochemical reaction mechanism are the main challenges for MoS2 anode in Na-ion batteries. In this study, molybdenum disulfide/carbon (MoS2 /C) nanospheres are fabricated and used for Na-ion battery anodes. MoS2 /C nanospheres deliver a reversible capacity of 520 mAh g(-1) at 0.1 C and maintain at 400 mAh g(-1) for 300 cycles at a high current density of 1 C, demonstrating the best cycling performance of MoS2 for Na-ion batteries to date. The high capacity is attributed to the short ion and electron diffusion pathway, which enables fast charge transfer and low concentration polarization. The stable cycling performance and high coulombic efficiency (∼100%) of MoS2 /C nanospheres are ascribed to (1) highly reversible conversion reaction of MoS2 during sodiation/desodiation as evidenced by ex-situ X-ray diffraction (XRD) and (2) the formation of a stable solid electrolyte interface (SEI) layer in fluoroethylene carbonate (FEC) based electrolyte as demonstrated by fourier transform infrared spectroscopy (FTIR) measurements.

Journal ArticleDOI
01 May 2015-Small
TL;DR: A large enhancement of photocurrent response is obtained by coupling few-layer MoS2 with Au plasmonic nanostructure arrays, and it is confirmed that light can be trapped and enhanced near the Au nanoplates.
Abstract: 2D Molybdenum disulfide (MoS2 ) is a promising candidate material for high-speed and flexible optoelectronic devices, but only with low photoresponsivity. Here, a large enhancement of photocurrent response is obtained by coupling few-layer MoS2 with Au plasmonic nanostructure arrays. Au nanoparticles or nanoplates placed onto few-layer MoS2 surface can enhance the local optical field in the MoS2 layer, due to the localized surface plasmon (LSP) resonance. After depositing 4 nm thick Au nanoparticles sparsely onto few-layer MoS2 phototransistors, a doubled increase in the photocurrent response is observed. The photocurrent of few-layer MoS2 phototransistors exhibits a threefold enhancement with periodic Au nanoarrays. The simulated optical field distribution confirms that light can be trapped and enhanced near the Au nanoplates. These findings offer an avenue for practical applications of high performance MoS2 -based optoelectronic devices or systems in the future.

Journal ArticleDOI
01 Oct 2015-Small
TL;DR: The recent research progress related to nanoscale metal-organic frameworks (NMOFs) is summarized with a focus on synthesis strategies and drug delivery, molecular imaging, and theranostic applications.
Abstract: Metal–organic frameworks (MOFs), which are a unique class of hybrid porous materials built from metal ions and organic linkers, have attracted significant research interest in recent years. Compared with conventional porous materials, MOFs exhibit a variety of advantages, including a large surface area, a tunable pore size and shape, an adjustable composition and structure, biodegradability, and versatile functionalities, which enable MOFs to perform as promising platforms for drug delivery, molecular imaging, and theranostic applications. In this article, the recent research progress related to nanoscale metal–organic frameworks (NMOFs) is summarized with a focus on synthesis strategies and drug delivery, molecular imaging, and theranostic applications. The future challenges and opportunities of NMOFs are also discussed in the context of translational medical research. More effort is warranted to develop clinically translatable NMOFs for various applications in nanomedicine.

Journal ArticleDOI
01 Dec 2015-Small
TL;DR: It is demonstrated that natural red blood cell (RBC) membrane is a superior alternative to PEG and significant advancements toward solving the long-existing clinical challenges of developing biomaterials that are able to resist both immune response and rapid clearance are made.
Abstract: For decades, poly(ethylene glycol) (PEG) has been widely incorporated into nanoparticles for evading immune clearance and improving the systematic circulation time. However, recent studies have reported a phenomenon known as "accelerated blood clearance (ABC)" where a second dose of PEGylated nanomaterials is rapidly cleared when given several days after the first dose. Herein, we demonstrate that natural red blood cell (RBC) membrane is a superior alternative to PEG. Biomimetic RBC membrane-coated Fe(3)O(4) nanoparticles (Fe(3)O(4) @RBC NPs) rely on CD47, which is a "don't eat me" marker on the RBC surface, to escape immune clearance through interactions with the signal regulatory protein-alpha (SIRP-α) receptor. Fe(3)O(4) @RBC NPs exhibit extended circulation time and show little change between the first and second doses, with no ABC suffered. In addition, the administration of Fe(3)O(4) @RBC NPs does not elicit immune responses on neither the cellular level (myeloid-derived suppressor cells (MDSCs)) nor the humoral level (immunoglobulin M and G (IgM and IgG)). Finally, the in vivo toxicity of these cell membrane-camouflaged nanoparticles is systematically investigated by blood biochemistry, hematology testing, and histology analysis. These findings are significant advancements toward solving the long-existing clinical challenges of developing biomaterials that are able to resist both immune response and rapid clearance.

Journal ArticleDOI
01 Jun 2015-Small
TL;DR: The interfacial atomic and electronic structures, charge transfer processes, and interface engineering in perovskite solar cells are discussed in this review and an effective heterojunction is found to exist at the window/perovskites absorber interface, contributing to the relatively fast extraction of free electrons.
Abstract: The interfacial atomic and electronic structures, charge transfer processes, and interface engineering in perovskite solar cells are discussed in this review. An effective heterojunction is found to exist at the window/perovskite absorber interface, contributing to the relatively fast extraction of free electrons. Moreover, the high photovoltage in this cell can be attributed to slow interfacial charge recombination due to the outstanding material and interfacial electronic properties. However, some fundamental questions including the interfacial atomic and electronic structures and the interface stability need to be further clarified. Designing and engineering the interfaces are also important for the next-stage development of this cell.

Journal ArticleDOI
01 Jun 2015-Small
TL;DR: An excellent and highly stable battery performance should be attributed to the synergism of the ultrasmall CoS2 particles and the thin N-rich porous carbon shells derieved from nanosized MOF precusors.
Abstract: C obalt sulfi de (CoS 2 ) is considered one of the most promising alternative anode materials for high-performance lithium-ion batteries (LIBs) by virtue of its remarkable electrical conductivity, high theoretical capacity, and low cost. However, it suffers from a poor cycling stability and low rate capability because of its volume expansion and dissolution of the polysulfi de intermediates in the organic electrolytes during the battery charge/discharge process. In this study, a novel porous carbon/CoS 2 composite is prepared by using nano metal‐organic framework (MOF) templates for high-preformance LIBs. The as-made ultrasmall CoS 2 (15 nm) nanoparticles in N-rich carbon exhibit promising lithium storage properties with negligible loss of capacity at high charge/discharge rate. At a current density of 100 mA g −1 , a capacity of 560 mA h g −1 is maintained after 50 cycles. Even at a current density as high as 2500 mA g −1 , a reversible capacity of 410 mA h g −1 is obtained. The excellent and highly stable battery performance should be attributed to the synergism of the ultrasmall CoS 2 particles and the thin N-rich porous carbon shells derieved from nanosized MOF precusors.

Journal ArticleDOI
01 Mar 2015-Small
TL;DR: The optimized asymmetric supercapacitor could be cycled reversibly in the high voltage range of 0-2 V in aqueous electrolyte, which exhibits maximum energy density and shows superior long cycle life along with ∼100% capacitance retention after 1000 cycles and ∼93% after 4000 cycles.
Abstract: In this work, MnO(2)/GO (graphene oxide) composites with novel multilayer nanoflake structure, and a carbon material derived from Artemia cyst shell with genetic 3D hierarchical porous structure (HPC), are prepared. An asymmetric supercapacitor has been fabricated using MnO(2)/GO as positive electrode and HPC as negative electrode material. Because of their unique structures, both MnO(2)/GO composites and HPC exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high voltage range of 0-2 V in aqueous electrolyte, which exhibits maximum energy density of 46.7 Wh kg(-1) at a power density of 100 W kg(-1) and remains 18.9 Wh kg(-1) at 2000 W kg(-1). Additionally, such device also shows superior long cycle life along with ∼100% capacitance retention after 1000 cycles and ∼93% after 4000 cycles.

Journal ArticleDOI
01 May 2015-Small
TL;DR: A novel nanohybrid of SnO(2) nanocrystal (NC)-decorated crumpled MoS( 2) nanosheet and its exciting air-stable property for room temperature sensing of NO(2).
Abstract: The unique properties of MoS(2) nanosheets make them a promising candidate for high-performance room temperature sensing. However, the properties of pristine MoS(2) nanosheets are strongly influenced by the significant adsorption of oxygen in an air environment, which leads to instability of the MoS(2) sensing device, and all sensing results on MoS(2) reported to date were exclusively obtained in an inert atmosphere. This significantly limits the practical sensor application of MoS(2) in an air environment. Herein, a novel nanohybrid of SnO(2) nanocrystal (NC)-decorated crumpled MoS(2) nanosheet (MoS(2)/SnO(2)) and its exciting air-stable property for room temperature sensing of NO(2) are reported. Interestingly, the SnO(2) NCs serve as strong p-type dopants for MoS(2), leading to p-type channels in the MoS(2) nanosheets. The SnO(2) NCs also significantly enhance the stability of MoS(2) nanosheets in dry air. As a result, unlike other MoS(2) sensors operated in an inert gas (e.g. N(2)), the nanohybrids exhibit high sensitivity, excellent selectivity, and repeatability to NO(2) under a practical dry air environment. This work suggests that NC decoration significantly tunes the properties of MoS(2) nanosheets for various applications.

Journal ArticleDOI
01 Jan 2015-Small
TL;DR: The relationship between the material properties and toxicity appears to be complex and diifficult to understand, which is partly due to incomplete characterization of the nanomaterial, and possibly due to experimental artefacts in the characterization of it and/or its interactions with living organisms.
Abstract: Metal oxide nanomaterials are widely used in practical applications and represent a class of nanomaterials with the highest global annual production. Many of those, such as TiO2 and ZnO, are generally considered non-toxic due to the lack of toxicity of the bulk material. However, these materials typically exhibit toxicity to bacteria and fungi, and there have been emerging concerns about their ecotoxicity effects. The understanding of the toxicity mechanisms is incomplete, with different studies often reporting contradictory results. The relationship between the material properties and toxicity appears to be complex and diifficult to understand, which is partly due to incomplete characterization of the nanomaterial, and possibly due to experimental artefacts in the characterization of the nanomaterial and/or its interactions with living organisms. This review discusses the comprehensive characterization of metal oxide nanomaterials and the mechanisms of their toxicity.

Journal ArticleDOI
01 Jan 2015-Small
TL;DR: The constructed hybrid catalyst shows extremely high oxgen evolution reaction (OER) activity, even beyond the state-of-the-art RuO2 catalyst in alkaline media.
Abstract: CeO2 /CoSe2 nanobelt composite for electrochemical water oxidation: A new CeO2 /CoSe2 nanobelt composite is developed as a highly effective water oxidation electrocatalyst by growing CeO2 nanoparticle CoSe2 nanobelts in situ via a simple polyol reduction route. The constructed hybrid catalyst shows extremely high oxgen evolution reaction (OER) activity, even beyond the state-of-the-art RuO2 catalyst in alkaline media.

Journal ArticleDOI
01 Apr 2015-Small
TL;DR: In this article, a bio-inspired flexible pressure sensor is generated with high sensitivity (50.17 kPa(-1)), quick responding time (<20 ms), and durable stability (negligible loading-unloading signal changes over 10 000 cycles).
Abstract: A bio-inspired flexible pressure sensor is generated with high sensitivity (50.17 kPa(-1)), quick responding time (<20 ms), and durable stability (negligible loading-unloading signal changes over 10 000 cycles). Notably, the key resource of surface microstructures upon sensor substrates results from the direct molding of natural mimosa leaves, presenting a simple, environment-friendly and easy scale-up fabrication process for these flexible pressure sensors.

Journal ArticleDOI
01 Apr 2015-Small
TL;DR: In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes.
Abstract: As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries.

Journal ArticleDOI
01 Apr 2015-Small
TL;DR: A homogeneous dispersion of hexagonal boron nitride nanosheets in elastomers is obtained by solution compounding methods, and a high orientation of BNNSs is achieved by strong shearing, indicating that the material is promising for thermal-management applications which need high thermal conductivity, low dielectric constant, and adequate softness.
Abstract: A homogeneous dispersion of hexagonal boron nitride nanosheets (BNNSs) in elastomers is obtained by solution compounding methods, and a high orientation of BNNSs is achieved by strong shearing. The composites show high thermal conductivities, especially when BNNS loading exceeds 17.5 vol%, indicating that the material is promising for thermal-management applications which need high thermal conductivity, low dielectric constant, and adequate softness.

Journal ArticleDOI
01 May 2015-Small
TL;DR: This concept paper summarizes first the operating principles, history, recent progress, and challenges of RT Na-S battery technology, and then suggests future directions towards enhancing performance in order for it to be a viable technology.
Abstract: Ambient- or room-temperature sodium-sulfur batteries (RT Na-S) are gaining much attention as a low-cost option for large-scale electrical energy storage applications. However, their adoption is hampered by severe challenges. This concept paper summarizes first the operating principles, history, recent progress, and challenges of RT Na-S battery technology, and then suggests future directions towards enhancing performance in order for it to be a viable technology.

Journal ArticleDOI
01 Mar 2015-Small
TL;DR: Cobalt is homogeneously engineered into the framework of pristine graphitic carbon nitride via chemical interaction, establishing surface junctions on the polymeric photocatalyst for the water oxidation reaction, which promotes the surface kinetics of oxygen evolution reaction by the g-C3 N4 -based photocatalytic system.
Abstract: The development of water oxidation catalysts (WOCs) to cooperate with light-energy transducers for solar energy conversion by water splitting and CO2 fixation is a demanding challenge. The key measure is to develop efficient and sustainable WOCs that can support a sustainable photocatalyst to reduce over-potentials and thus to enhance reaction rate of water oxidation reaction. Cobalt has been indentified as active component of WOCs for photo/electrochemical water oxidation, and its performance relies strongly on the contact and adhesion of the cobalt species with photoactive substrates. Here, cobalt is homogeneously engineered into the framework of pristine graphitic carbon nitride (g-C3 N4 ) via chemical interaction, establishing surface junctions on the polymeric photocatalyst for the water oxidation reaction. This modification promotes the surface kinetics of oxygen evolution reaction by the g-C3 N4 -based photocatalytic system made of inexpensive substances, and further optimizations in the optical and textural structure of Co-g-C3 N4 is envisaged by considering ample choice of modification schemes for carbon nitride materials.

Journal ArticleDOI
01 Jan 2015-Small
TL;DR: By increasing the density of exposed active edges, the perpendicularly oriented structure of MoSe2 nanosheets facilitates ion/electrolyte transport at the electrode interface and minimizes the restacking of nanoshes, while the graphene improves the electrical contact between the catalyst and the electrode.
Abstract: By increasing the density of exposed active edges, the perpendicularly oriented structure of MoSe2 nanosheets facilitates ion/electrolyte transport at the electrode interface and minimizes the restacking of nanosheets, while the graphene improves the electrical contact between the catalyst and the electrode. This makes the MoSe2/graphene hybrid perfect as a catalyst in the hydrogen evolution reaction (HER). It shows a greatly improved catalytic activity compared with bare MoSe2 nanosheets.

Journal ArticleDOI
01 Mar 2015-Small
TL;DR: Results demonstrate that the TiO(2) NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li-ion batteries, which makes it a promising electrochemical power source.
Abstract: A novel hybrid Li-ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li-ion battery type anode (TiO(2) nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free-standing TiO(2) nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li-ion capacitor allows rapid electron and ion transport in the non-aqueous electrolyte. Within a voltage range of 0.0-3.8 V, a high energy of 82 Wh kg(-1) is achieved at a power density of 570 W kg(-1). Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg(-1) can be retained. These results demonstrate that the TiO(2) NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li-ion batteries, which makes it a promising electrochemical power source.

Journal ArticleDOI
01 Jan 2015-Small
TL;DR: The remarkable decontamination efficiency of self-propelled activated carbon-based Janus micromotors is illustrated towards the rapid removal of heavy metals, nitroaromatic explosives, organophosphorous nerve agents and azo-dye compounds, indicating considerable promise for diverse environmental, defense, and public health applications.
Abstract: Self-propelled activated carbon-based Janus particle micromotors that display efficient locomotion in environmental matrices and offer effective 'on-the-fly' removal of wide range of organic and inorganic pollutants are described. The new bubble-propelled activated carbon Janus micromotors rely on the asymmetric deposition of a catalytic Pt patch on the surface of activated carbon microspheres. The rough surface of the activated carbon microsphere substrate results in a microporous Pt structure to provide a highly catalytic layer, which leads to an effective bubble evolution and propulsion at remarkable speeds of over 500 μm/s. Such coupling of the high adsorption capacity of carbon nanoadsorbents with the rapid movement of these catalytic Janus micromotors, along with the corresponding fluid dynamics and mixing, results in a highly efficient moving adsorption platform and a greatly accelerated water purification. The adsorption kinetics and adsorption isotherms have been investigated. The remarkable decontamination efficiency of self-propelled activated carbon-based Janus micromotors is illustrated towards the rapid removal of heavy metals, nitroaromatic explosives, organophosphorous nerve agents and azo-dye compounds, indicating considerable promise for diverse environmental, defense, and public health applications.

Journal ArticleDOI
01 Jan 2015-Small
TL;DR: Dendritic silica micro-/nanoparticles with center-radial pore structures, a kind of newly created porous material, have attracted considerable attention owing to their unique open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas compared with conventional mesoporous silica nanoparticles (MSNs).
Abstract: Dendritic silica micro-/nanoparticles with center-radial pore structures, a kind of newly created porous material, have attracted considerable attention owing to their unique open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas compared with conventional mesoporous silica nanoparticles (MSNs). They are very promising platforms for a variety of applications in catalysis and nanomedicine. In this review, their unique structural characteristics and properties are first analyzed, then novel and interesting synthesis methods associated with the possible formation mechanisms are summarized to provide material scientists some inspiration for the preparation of this kind of dendritic particles. Subsequently, a few examples of interesting applications are presented, mainly in catalysis, biomedicine, and other important fields such as for sacrificial templates and functional coatings. The review is concluded with an outlook on the prospects and challenges in terms of their controlled synthesis and potential applications.

Journal ArticleDOI
01 Feb 2015-Small
TL;DR: This research significantly contributes to the development of large-scale synthesis of electrocatalytic MoS2 -based materials.
Abstract: MoS2 and other transition metal dichalcogenides (TMDs) have recently gained a renewed interest due to the interesting electronic, catalytic, and mechanical properties which they possess when down-sized to single or few layer sheets. Exfoliation of the bulk multilayer structure can be achieved by a preliminary chemical Li intercalation followed by the exfoliation due to the reaction of Li with water. Organolithium compounds are generally adopted for the Li intercalation with n-butyllithium (n-Bu-Li) being the most common. Here, the use of three different organolithium compounds are investigated and compared, i.e., methyllithium (Me-Li), n-butyllithium (n-Bu-Li) and tert-butyllithium (t-Bu-Li), used for the exfoliation of bulk MoS2 . Scanning transmission electron microscopy (STEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) are adopted for a comprehensive characterization of all materials under investigation. In addition, catalytic properties towards the hydrogen evolution reaction (HER) and capacitive properties are also tested. Different organolithium compounds exhibit different extent of Li intercalation resulting in different degrees of exfoliation. The inherent electrochemical behavior of MoS2 consisting of significant anodic and cathodic peaks as well as its capacitive behavior and catalytic properties towards hydrogen evolution reaction are strongly connected to the exfoliation compound used. This research significantly contributes to the development of large-scale synthesis of electrocatalytic MoS2 -based materials.