Showing papers in "Smart Materials and Structures in 2010"
TL;DR: In this article, the ferroelectric switching behavior and piezoelectric response of polyvinylidene fluoride (PVDF) prepared by drawing at stretching ratios from 1 to 5 and temperatures from 80 to 140 °C has been studied.
Abstract: The ferroelectric switching behaviour and piezoelectric response of poly(vinylidene fluoride) (PVDF) prepared by drawing at stretching ratios from 1 to 5 and temperatures from 80 to 140 °C has been studied. Stretching ratio and temperature deeply influence the α (non-ferroelectric) to β (ferroelectric) phase transformation. The variations in the phase content are accompanied by changes in the degree of crystallinity and the microstructure, all of them influencing the macroscopic piezoelectric and ferroelectric response of the material. This work shows how the piezo- and ferroelectric behaviour of PVDF depends on the aforementioned parameters and, in particular, on the crystalline β-phase content. Coercive electric field, remnant polarization and saturation polarization increase with increasing ferroelectric β-phase content in the sample. In a similar way, samples with higher β-phase content show higher d33 piezoelectric coefficients.
352 citations
TL;DR: In this article, rare-earth permanent magnets and high permeable magnetic loops are used to configure a four-phase linear generator with increased efficiency and reduced weight for a retrofit regenerative shock absorber.
Abstract: During the everyday usage of an automobile, only 10–16% of the fuel energy is used to drive the car—to overcome the resistance from road friction and air drag. One important loss is the dissipation of vibration energy by shock absorbers in the vehicle suspension under the excitation of road irregularity and vehicle acceleration or deceleration. In this paper we design, characterize and test a retrofit regenerative shock absorber which can efficiently recover the vibration energy in a compact space. Rare-earth permanent magnets and high permeable magnetic loops are used to configure a four-phase linear generator with increased efficiency and reduced weight. The finite element method is used to analyze the magnetic field and guide the design optimization. A theoretical model is created to analytically characterize the waveforms and regenerated power of the harvester at various vibration amplitudes, frequencies, equilibrium positions and design parameters. It was found that the waveform and RMS voltage of the individual coils will depend on the equilibrium position but the total energy will not. Experimental studies of a 1:2 scale prototype are conducted and the results agree very well with the theoretical predictions. Such a regenerative shock absorber will be able to harvest 16–64 W power at 0.25–0.5 m s − 1 RMS suspension velocity.
341 citations
Journal Article•
242 citations
TL;DR: In this paper, the energy harvesting capability of submerged ionic polymer metal composites (IPMCs) is analyzed and experimentally studied using a closed-form solution for the current flowing through the IPMC strip as a function of the voltage across its electrodes and its deformation.
Abstract: In this paper, we analytically and experimentally study the energy harvesting capability of submerged ionic polymer metal composites?(IPMCs). We consider base excitation of an IPMC strip that is shunted with an electric impedance and immersed in a fluid environment. We develop a modeling framework to predict the energy scavenged from the IPMC vibration as a function of the excitation frequency range, the constitutive and geometric properties of the IPMC, and the electric shunting load. The mechanical vibration of the IPMC strip is modeled through Kirchhoff?Love plate theory. The effect of the encompassing fluid on the IPMC vibration is described by using a linearized solution of the Navier?Stokes equations, that is traditionally considered in modeling atomic force microscope cantilevers. The dynamic chemo-electric response of the IPMC is described through the Poisson?Nernst?Planck model, in which the effect of mechanical deformations of the backbone polymer is accounted for. We present a closed-form solution for the current flowing through the IPMC strip as a function of the voltage across its electrodes and its deformation. We use modal analysis to establish a handleable expression for the power harvested from the vibrating IPMC and to optimize the shunting impedance for maximum energy harvesting. We validate theoretical findings through experiments conducted on IPMC strips vibrating in aqueous environments.
211 citations
TL;DR: In this paper, a periodic 4 × 4 lay-out of resistive inductive (RL) shunted piezoelectric transducers (PZT) patches is designed and applied to achieve broadband vibration reduction of a flexible isotropic plate over tunable frequency bands.
Abstract: In this work, a periodic 4 × 4 lay-out of resistive inductive (RL) shunted piezoelectric transducer (PZT) patches is designed and applied to achieve broadband vibration reduction of a flexible isotropic plate over tunable frequency bands. Each surface-bonded PZT patch is connected to a single independent RL circuit and all shunt circuits are tuned at the same frequency. A finite element-based design methodology is used to predict the attenuation properties of the unit cell that characterize the periodic assembly. The predictions are experimentally validated by measuring the spatial average harmonic response of the plate. Significant broadband attenuation is obtained over frequency bands centered at the resonance frequency of the shunting circuit.
202 citations
TL;DR: In this paper, an electromechanically coupled model for a cantilevered piezoelectric energy harvester with a tip proof mass is presented, based not only on a detailed modal analysis, but also on a thorough investigation of damping ratios that can significantly affect device performance.
Abstract: An electromechanically coupled model for a cantilevered piezoelectric energy harvester with a proof mass is presented. Proof masses are essential in microscale devices to move device resonances towards optimal frequency points for harvesting. Such devices with proof masses have not been rigorously modeled previously; instead, lumped mass or concentrated point masses at arbitrary points on the beam have been used. Thus, this work focuses on the exact vibration analysis of cantilevered energy harvester devices including a tip proof mass. The model is based not only on a detailed modal analysis, but also on a thorough investigation of damping ratios that can significantly affect device performance. A model with multiple degrees of freedom is developed and then reduced to a single-mode model, yielding convenient closed-form normalized predictions of device performance. In order to verify the analytical model, experimental tests are undertaken on a macroscale, symmetric, bimorph, piezoelectric energy harvester with proof masses of different geometries. The model accurately captures all aspects of the measured response, including the location of peak-power operating points at resonance and anti-resonance, and trends such as the dependence of the maximal power harvested on the frequency. It is observed that even a small change in proof mass geometry results in a substantial change of device performance due not only to the frequency shift, but also to the effect on the strain distribution along the device length. Future work will include the optimal design of devices for various applications, and quantification of the importance of nonlinearities (structural and piezoelectric coupling) for device performance.
196 citations
TL;DR: In this article, a self-priming DEG system is presented that is capable of replenishing charge losses from generated energy, meaning that the energy source no longer requires periodic replacement.
Abstract: Dielectric elastomer generators (DEG) in their present form are not suitable for autonomous power generation; they simply increase the amount of power that an electrical energy source can supply. They require a priming charge for each cycle, normally provided by an auxiliary power source but, due to charges being transferred to a load or depleted by system losses, the energy source will eventually need replacing. In this paper we present a self-priming DEG system that is capable of replenishing these charge losses from generated energy, meaning that the energy source no longer requires periodic replacement. We then experimentally demonstrate that this system not only can replenish charge losses, but also is capable of increasing the amount of charge in the system and the voltage across the capacitance storing the charge. For instance, the system was capable of gradually boosting its voltage from 10 V up to 3.25 kV. This is highly advantageous because it was also shown that the efficiency of DEG power generation increases monotonically with DEG voltage. Also, this system allows these higher voltages to be reached without the need for a high voltage transformer, reducing the system cost.
174 citations
TL;DR: In this paper, an improved analysis accounting for the effect of frequency deviation from resonance on the electrical response of an SSHI system has been proposed to investigate the electrical behavior of a series-SSHI system.
Abstract: SSHI (synchronized switch harvesting on inductor) techniques have been demonstrated to be capable of boosting power in vibration-based piezoelectric energy harvesters. However, the effect of frequency deviation from resonance on the electrical response of an SSHI system has not been taken into account from the original analysis. Here an improved analysis accounting for such an effect is proposed to investigate the electrical behavior of a series-SSHI system. The analytic expression of harvested power is proposed and validated numerically. Its performance evaluation is carried out and compared with the piezoelectric systems using either the standard or parallel-SSHI electronic interfaces. The result shows that the electrical response of an ideal series-SSHI system is in sharp contrast to that of an ideal parallel-SSHI system. The former is similar to a strongly coupled electromechanical standard system operated at the open circuit resonance, while the latter is analogous to that operated at the short circuit resonance with different magnitudes of matching impedance. In addition, the performance degradation due to non-ideal voltage inversion is also discussed. It shows that a series-SSHI system avails against the standard technique in the case of medium coupling, since its peak power is close to the ideal optimal power and the reduction in power is less sensitive to frequency deviation. However, the consideration of inevitable diode loss in practical devices favors the parallel-SSHI technique, since the frequency-insensitive feature is much more pronounced in parallel-SSHI systems than in series-SSHI systems.
169 citations
TL;DR: In this article, the authors review and compare the most recent advances in fabrication and testing of biomimetic dry adhesives from modeling, fabrication, and testing perspectives, and provide qualitative comparisons between different adhesive designs.
Abstract: In the past two years, there have been a large number of publications on the topic of biomimetic dry adhesives from modeling, fabrication and testing perspectives. We review and compare the most recent advances in fabrication and testing of these materials. While there is increased convergence and consensus as to what makes a good dry adhesive, the fabrication of these materials is still challenging, particularly for anisotropic or hierarchal designs. Although qualitative comparisons between different adhesive designs can be made, quantifying the exact performance and rating each design is significantly hampered by the lack of standardized testing methods. Manufacturing dry adhesives, which can reliably adhere to rough surfaces, show directional and self-cleaning behavior and are relatively simple to manufacture, is still very challenging—great strides by multiple research groups have however made these goals appear achievable within the next few years.
149 citations
TL;DR: In this article, a nonlinear, magnetically excited energy harvester that exhibits efficient broadband, frequency-independent performance utilizing a passive auxiliary structure that remains stationary relative to the base motion is presented.
Abstract: Traditional vibration-based energy harvesters are designed for a specific base excitation frequency by matching its fundamental natural frequency. This work presents the modeling and analysis of a nonlinear, magnetically excited energy harvester that exhibits efficient broadband, frequency-independent performance utilizing a passive auxiliary structure that remains stationary relative to the base motion. This system is especially effective in the regime of driving frequencies well below its fundamental frequency, thus enabling a more compact design solution over traditional topologies. A model based on Euler–Bernoulli beam theory is coupled to a linear circuit and a model of the nonlinear, magnetic interaction to produce a distributed parameter magneto-electromechanical system. This model is used in both harmonic and stochastic base excitation case studies. The results of these simulations demonstrate multiple-order-of-magnitude power harvesting performance improvement at low driving frequencies and an insensitivity to time-varying base excitation. Furthermore, the proposed system is shown to outperform an optimally designed, standard energy harvester in the presence of broadband, random base excitation.
147 citations
TL;DR: In this paper, composite corrugated sandwich structures are used as morphing skin panels in the trailing edge region of a scaled morphing aerofoil section for low speed and small air vehicles.
Abstract: Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles.
TL;DR: In this paper, a magnetorheological actuator is used in assistive knee braces to provide controllable torque, which can work as a brake or a clutch to transfer the torque generated by the motor to the leg.
Abstract: This paper is aimed at developing a smart actuator for assistive knee braces to provide assistance to disabled or elderly people with mobility problems. A magnetorheological (MR) actuator is developed to be used in assistive knee braces to provide controllable torque. The MR actuator can work as a brake or a clutch. When active torque is needed, the DC motor works and the MR actuator functions as a clutch to transfer the torque generated by the motor to the leg; when passive torque is desired, the DC motor is turned off and the MR actuator functions as a brake to provide controllable passive torque. The prototype of the developed MR actuator is fabricated and experiments are carried out to investigate the characteristics of the MR actuator. The results show that the MR actuator is able to provide sufficient torque needed for normal human activities. Adaptive control is proposed for controlling the MR actuator. Anti-windup strategy is used to achieve better control performance. Experiments on the MR actuator under control are also performed to study the torque tracking ability of the system.
TL;DR: In this article, a combination of unconstrained optimization technique associated with a local Newton's iterative method was employed to solve a set of nonlinear equations in order to assess the impact location coordinates and the wave speed.
Abstract: This paper investigates the development of an in situ impact detection monitoring system able to identify in real-time the acoustic emission location. The proposed algorithm is based on the differences of stress waves measured by surface-bonded piezoelectric transducers. A joint time-frequency analysis based on the magnitude of the continuous wavelet transform was used to determine the time of arrival of the wavepackets. A combination of unconstrained optimization technique associated with a local Newton's iterative method was employed to solve a set of nonlinear equations in order to assess the impact location coordinates and the wave speed. With the proposed approach, the drawbacks of a triangulation method in terms of estimating a priori the group velocity and the need to find the best time-frequency technique for the time-of-arrival determination were overcome. Moreover, this algorithm proved to be very robust since it was able to converge from almost any guess point and required little computational time. A comparison between the theoretical and experimental results carried out with piezoelectric film (PVDF) and acoustic emission transducers showed that the impact source location and the wave velocity were predicted with reasonable accuracy. In particular, the maximum error in estimation of the impact location was less than 2% and about 1% for the flexural wave velocity.
TL;DR: In this paper, a shape memory alloy (SMA) with a composition of Ni60Ti40 (wt%) was chosen for the fabrication of active beam elements intended for use as cyclic actuators and incorporated into a morphing aerospace structure.
Abstract: A shape memory alloy (SMA) with a composition of Ni60Ti40 (wt%) was chosen for the fabrication of active beam elements intended for use as cyclic actuators and incorporated into a morphing aerospace structure. The active structure is a variable-geometry chevron (VGC) designed to reduce jet engine noise in the take-off flight regime while maintaining efficiency in the cruise regime. This two-part work addresses the training, characterization and derived material properties of the new nickel-rich composition, the assessment of the actuation properties of the active beam actuator and the accurate analysis of the VGC and its subcomponents using a model calibrated from the material characterization. The characterization performed in part I of this work was intended to provide quantitative information used to predict the response of SMA beam actuators of the same composition and with the same heat treatment history. Material in the form of plates was received and ASTM standard tensile testing coupons were fabricated and tested. To fully characterize the material response as an actuator, various thermomechanical experiments were performed. Properties such as actuation strain and transformation temperatures as a function of applied stress were of primary interest. Results from differential scanning calorimetry, monotonic tensile loading and constant stress thermal loading for the as-received, untrained material are first presented. These show lower transformation temperatures, higher elastic stiffnesses (60–90 GPa) and lower recoverable transformation strains (≈1.5%) when compared to equiatomic NiTi (Nitinol). Stabilization (training) cycles were applied to the tensile specimens and characterization tests were repeated for the stable (trained) material. The effects of specimen training included the saturation of cyclically generated irrecoverable plastic strains and a broadening of the thermal transformation hysteresis. A set of final derived material properties for this stable material is provided. Finally, the actuation response of a structural beam component composed of the same material given the same thermomechanical processing conditions was assessed by applying a constant bias load and a variable bias load as thermal actuation cycles were imposed.
TL;DR: In this article, a vibration-based energy harvester connected to a generalized electrical load (containing both real and reactive impedance) is presented, and it is demonstrated that the reactive component of the electrical load can be used to tune the vibration energy harvesting system to significantly increase the output power away from the resonant peak of the device.
Abstract: A fundamental drawback of vibration-based energy harvesters is that they typically feature a resonant mass/spring mechanical system to amplify the small source vibrations; the limited bandwidth of the mechanical amplifier restricts the effectiveness of the energy harvester considerably. By extending the range of input frequencies over which a vibration energy harvester can generate useful power, e.g. through adaptive tuning, it is not only possible to open up a wider range of applications, such as those where the source frequency changes over time, but also possible to relax the requirements for precision manufacture or the need for mechanical adjustment in situ. In this paper, a vibration-based energy harvester connected to a generalized electrical load (containing both real and reactive impedance) is presented. It is demonstrated that the reactive component of the electrical load can be used to tune the harvester system to significantly increase the output power away from the resonant peak of the device. An analytical model of the system is developed, which includes non-ideal components arising from the physical implementation, and the results are confirmed by experiment. The − 3 dB (half-power) bandwidth of the prototype energy harvester is shown to be over three times greater when presented with an optimized load impedance compared to that for the same harvester presented with an optimized resistive only load.
TL;DR: In this article, an optimal design of a magnetorheological (MR) brake for a middle-sized passenger car which can replace a conventional hydraulic disc-type brake is presented.
Abstract: This paper presents an optimal design of a magnetorheological (MR) brake for a middle-sized passenger car which can replace a conventional hydraulic disc-type brake. In the optimization, the required braking torque, the temperature due to zero-field friction of MR fluid, the mass of the brake system and all significant geometric dimensions are considered. After describing the configuration, the braking torque of the proposed MR brake is derived on the basis of the field-dependent Bingham and Herschel–Bulkley rheological model of the MR fluid. The optimal design of the MR brake is then analyzed taking into account available space, mass, braking torque and steady heat generated by zero-field friction torque of the MR brake. The optimization procedure based on the finite element analysis integrated with an optimization tool is proposed to obtain optimal geometric dimensions of the MR brake. Based on the proposed procedure, optimal solutions of single and multiple disc-type MR brakes featuring different types of MR fluid are achieved. From the results, the most effective MR brake for the middle-sized passenger car is identified and some discussions on the performance improvement of the optimized MR brake are described.
TL;DR: In this paper, a shape memory alloy (SMA) composition of Ni60Ti40 (wt%) was chosen for the fabrication of active beam components used as cyclic actuators and incorporated into morphing aerospace structures.
Abstract: A shape memory alloy (SMA) composition of Ni60Ti40 (wt%) was chosen for the fabrication of active beam components used as cyclic actuators and incorporated into morphing aerospace structures. The active structure is a variable-geometry chevron (VGC) designed to reduce jet engine noise in the take-off flight regime while maintaining efficiency in the cruise regime. This two-part work addresses the training, characterization and derived material properties of the new nickel-rich NiTi composition, the assessment of the actuation properties of the active beam actuator and the accurate analysis of the VGC and its subcomponents using a model calibrated from the material characterization. The second part of this two-part work focuses on the numerical modeling of the jet engine chevron application, where the end goal is the accurate prediction of the VGC actuation response. A three-dimensional (3D) thermomechanical constitutive model is used for the analysis and is calibrated using the axial testing results from part I. To best capture the material response, features of several SMA constitutive models proposed in the literature are combined to form a new model that accounts for two material behaviors not previously addressed simultaneously. These are the variation in the generated maximum actuation strain with applied stress level and a smooth strain–temperature constitutive response at the beginning and end of transformation. The accuracy of the modeling effort is assessed by comparing the analysis deflection predictions for a given loading path imposed on the VGC or its subcomponents to independently obtained experimental results consisting of photogrammetric data. For the case of full actuation of the assembled VGC, the average error in predicted centerline deflection is less than 6%.
TL;DR: In this paper, the authors investigated the properties of a multi-layered beam with MR fluid as a sandwich layer between the two layers of the continuous elastic structure and formulated the governing equations of a multilayer MR beam in the finite element form and using the Ritz method.
Abstract: Magnetorheological (MR) materials exhibit rapid variations in their rheological properties when subjected to varying magnetic field and thus offer superior potential for applications in smart structures requiring high bandwidth. MR sandwich structures can apply distributed control force to yield variations in stiffness and damping properties of the structure in response to the intensity of the applied magnetic field and could thus provide vibration suppression over a broad range of external excitation frequencies. This study investigates the properties of a multi-layered beam with MR fluid as a sandwich layer between the two layers of the continuous elastic structure. The governing equations of a multi-layer MR beam are formulated in the finite element form and using the Ritz method. A free oscillation experiment is performed to estimate the relationship between the magnetic field and the complex shear modulus of the MR materials in the pre-yield regime. The validity of the finite element and Ritz formulations developed is examined by comparing the results from the two models with those from the experimental investigation. Various parametric studies have been performed in terms of variations of the natural frequencies and loss factor as functions of the applied magnetic field and thickness of the MR fluid layer for various boundary conditions. The forced vibration responses of the MR sandwich beam are also evaluated under harmonic force excitation. The results illustrate that the natural frequencies could be increased by increasing the magnetic field while the magnitudes of the peak deflections could be considerably decreased, which demonstrates the vibration suppression capability of the MR sandwich beam.
TL;DR: In this paper, a 3D woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2).
Abstract: In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and repeatedly with 32 and 42 J of energy. G1 specimens were healed after each impact until perforation occurred. G2 specimens were not healed after each impact and served as controls. At 32 J impact energy, G2 specimens were perforated at the 9th impact while G1 specimens lasted until the 15th impact; at 42 J impact energy, G2 specimens were perforated at the 5th impact while G1 specimens were perforated at the 7th impact. Visual inspection, C-scan, and scanning electron microscopy techniques were used to evaluate damage, failure modes, and healing efficiency.
Journal Article•
TL;DR: In this article, a distributed sensor network is proposed for structural health monitoring using guided waves in plate-like structures, where each piezoelectric sensor acts in turn as an actuator and a local linear neural network is used to model the nonlinear dispersion curves.
Abstract: A new approach for structural health monitoring using guided waves in plate-like structures has been developed. In contrast to previous approaches, which mainly focused on isotropic or quasi-isotropic plates, the proposed algorithm does not assume any simplifications regarding anisotropic wave propagation. Thus, it can be used to improve the probability of detection. In this paper the mathematical background for damage localization in anisotropic plates will be introduced. This is an extension of the widely known ellipse method. The formalism is based on a distributed sensor network, where each piezoelectric sensor acts in turn as an actuator. The automatic extraction of the onset time of the first waveform in the differential signal in combination with a statistical post-processing via a two-dimensional probability density function and the application of the expectation-maximization algorithm allows a completely automatic localization procedure. Thus, multiple damages can be identified at the same time. The present study uses ultrasonic signals provided by the spectral element method. This simulation approach shows good agreement with experimental measurements. A local linear neural network is used to model the nonlinear dispersion curves. The benefit of using a neural network approach is to increase the angular resolution that results from the sparse sensor network. Furthermore, it can be used to shorten the computational time for the damage localization procedure.
TL;DR: In this article, the controllability of vibration characteristics of magnetorheological cantilever sandwich beams was investigated in the form of variations in vibration amplitudes and shifts in magnitudes of the resonant natural frequency.
Abstract: The concept of vibration controllability with smart fluids within flexible structures has been of significant interest in the past two decades. Although much research has been done on structures with embedded electrorheological (ER) fluids, there has been little investigation of magnetorheological (MR) fluid adaptive structures. In particular, a body of research on the experimental work of cantilever MR beams is still lacking. This experimental study investigates the controllability of vibration characteristics of magnetorheological cantilever sandwich beams. These adaptive structures are produced by embedding an MR fluid core between two elastic layers. The structural behaviour of the MR beams can be varied by applying an external magnetic field to activate the MR fluid. The stiffness and damping structural characteristics are controlled, demonstrating vibration suppression capabilities of MR fluids as structural elements. MR beams were fabricated with two different materials for comparison purposes. Diverse excitation methods were considered as well as a range of magnetic field intensities and configurations. Moreover, the cantilever MR beams were tested in horizontal and vertical configurations. The effects of partial and full activation of the MR beams were outlined based on the results obtained. The controllability of the beam's vibration response was observed in the form of variations in vibration amplitudes and shifts in magnitudes of the resonant natural frequency.
TL;DR: In this article, a permanent magnet is fixed to the end of a piezoelectric cantilever, causing it to experience a nonlinear force as it moves with respect to a stationary magnet.
Abstract: It is shown that the energy harvesting capabilities of a piezoelectric cantilever can be enhanced through coupling to a static magnetic field. A permanent magnet is fixed to the end of a piezoelectric cantilever, causing it to experience a non-linear force as it moves with respect to a stationary magnet. The magnetically coupled cantilever responds to vibration over a much broader frequency range than a standard cantilever, and exhibits non-periodic or chaotic motion. While the off-resonance response is substantially increased compared to that of a standard cantilever, no reduction in the response at the resonant frequency is observed, as long as a symmetric magnetic force is applied. The magnetically coupled cantilever motion is analyzed using a simple driven harmonic oscillator model with a non-linear magnetic force term. The results show that magnetic coupling can be used to increase the amount of power scavenged from environments containing multi-mode, or random vibration sources.
TL;DR: In this article, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously.
Abstract: In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined and 3D confined) were employed in this paper. Up to seven impact–healing cycles were conducted. Macroscopic and microscopic damage–healing observation and analysis were implemented. Residual strength was evaluated using an anti-buckling compression test fixture. It was found that the healing efficiency was over 100% for almost all the impact–healing cycles; programming using 20% prestrain led to higher residual strength than that with 3% prestrain; 3D confined recovery resulted in higher residual strength than 2D confined recovery; and as the impact energy increased, the healing efficiency slightly decreased.
TL;DR: In this paper, the authors present an exhaustive study relating to changes in the dielectric constant of VHB 4910 over wide frequency and temperature ranges and find that the permittivity was a function of: frequency, temperature, the nature of the electrodes and the pre-stress applied to material.
Abstract: Dielectric polymers are emerging electro-active materials used in high performance applications such as micropumps, robots and artificial muscles. The development of such applications requires the use of models taking into account the electrical parameters of the material. However, there is still some controversy over the dielectric constant of the most widely used dielectric polymer (VHB 4910, 3M, USA). In this paper, we present an exhaustive study relating to changes in the dielectric constant of VHB 4910 over wide frequency and temperature ranges. We found that the permittivity was a function of: frequency, temperature, the nature of the electrodes and the pre-stress applied to material. Mechanisms of dielectric polarization (β-relaxation) explain the behaviour in temperature and frequency of this parameter. The use of silver grease-compliant electrodes induces an increase in the dielectric constant which moves to a value of 5.4 (against 4.7 with gold electrodes). A pre-strain applied to the material shows a reduction up to 15% in the value of the dielectric constant. Short-range dipolar relaxation, local mechanical constraints in the material and a possible crystallization of material induced by the stretching are suggested to explain these behaviours. Analytic equations of the dielectric constant according to the temperature and pre-strain are then proposed and used to validate the behaviour of these materials for actuator and scavenger devices.
TL;DR: In this article, an extensive investigation of electroactive polymers for energy scavenging applications is presented and compared in terms of scavenging energy density, operating area, advantages and inconveniences.
Abstract: Electroactive polymers, generally used as actuators, offer very promising levels of performance in sensor mode, particularly in scavenging ambient mechanical energy applications. New, innovative, high performance, flexible generators can be developed to supply low consumption systems. This technology has the potential to be an alternative to traditional solutions based on electromagnetism, electrostatic or piezoelectricity, which are rigid solutions, mostly used in the high frequency range. This paper reports an extensive investigation of electroactive polymers for energy scavenging applications. The operating principle, properties and analytic models of six polymers are presented and compared in terms of scavenging energy density, operating area, advantages and inconveniences.
TL;DR: In this paper, a multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations.
Abstract: In this paper, a recently developed multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations. Two circular reinforced concrete columns instrumented with smart aggregates were fabricated and tested with a recorded seismic excitation at the structural laboratory at the University of Nevada—Reno. In the tests, the smart aggregates were used to perform multiple monitoring functions that included dynamic seismic response detection, structural health monitoring and white noise response detection. In the proposed health monitoring approach, a damage index was developed on the basis of the comparison of the transfer function with the baseline function obtained in the healthy state. A sensor-history damage index matrix is developed to monitor the damage evolution process. Experimental results showed that the acceleration level can be evaluated from the amplitude of the dynamic seismic response; the damage statuses at different locations were evaluated using a damage index matrix; the first modal frequency obtained from the white noise response decreased with increase of the damage severity. The proposed multi-functional smart aggregates have great potential for use in the structural health monitoring of large-scale concrete structures.
TL;DR: In this article, a preliminary investigation on energy harvesting from human walking via piezoelectric vibrating cantilevers is presented, where the transient electromechanical response and the harvested power of a shoe-mounted bimorph cantilever excited by the standard acceleration signal are computed by numerical simulations and compared with measurements on a real prototype.
Abstract: This paper presents a preliminary investigation on energy harvesting from human walking via piezoelectric vibrating cantilevers. Heel accelerations during human gait are established by correlating data gathered from the literature with direct experimental measurements. All the observed relevant features are synthesized in a typical (standard) acceleration signal, used in subsequent numerical simulations. The transient electromechanical response and the harvested power of a shoe-mounted bimorph cantilever excited by the standard acceleration signal is computed by numerical simulations and compared with measurements on a real prototype. A sensitivity analysis is finally developed to estimate the mean harvested power for a wide range of scavenger configurations. Acceptability criteria based on imposed geometrical constraints and resistance strength limits (e.g. fatigue limit) are also established. This analysis allows a quick preliminary screening of harvesting performance of different scavenger configurations.
TL;DR: In this paper, the geometrical design of the MR brake is addressed, including the design of a magnetic circuit and the geometry of the fluid chamber, which is formulated as an optimization problem aiming to maximize the braking torque.
Abstract: Magneto-rheological (MR) fluids have been successfully introduced to prosthetic devices. One such device is a biomechanical prosthetic knee that uses MR fluids to actively control its rotary stiffness. The brake is rotational, utilizing the MR fluid in shear mode. In this study, the geometrical design of the MR brake is addressed. This includes the design of the magnetic circuit and the geometry of the fluid chamber. Mathematical models are presented that describe the rotary torque of the brake. A novel perfluorinated polyether (PFPE)-based MR fluid is introduced, whose properties are tailored for the prosthetic knee. On-state and off-state rheological measurements of the MR fluid are presented. The finite element method is used to evaluate the magnetic flux density in the MR fluid. The design is formulated as an optimization problem, aiming to maximize the braking torque. A parametric study is carried out for several design parameters. Subsequently, a multi-objective optimization problem is defined that considers three design objectives: the field-induced braking torque, the off-state rotary stiffness and the weight of the brake. Trade-offs between the three design objectives are investigated which provides a basis for informed design decisions on furthering the success of the MR prosthetic knee.
TL;DR: In this paper, the cyclic thermo-mechanical triple-shape properties of a segmented poly(ester urethane) were analyzed for the permanent-shaped polymer via DSC.
Abstract: Thermo-mechanical investigations on a segmented poly(ester urethane) have shown that the material displays triple-shape functionality: gradual heating of programmed specimens leads first to the transformation from shape (A) to shape (B) and later from shape (B) back to permanent shape (C). In the essential two-step programming process, the first deformation state (B) is stabilized by crystallized soft segments at T