Journal•ISSN: 0378-8733
Social Networks
Elsevier BV
About: Social Networks is an academic journal. The journal publishes majorly in the area(s): Social network & Centrality. It has an ISSN identifier of 0378-8733. Over the lifetime, 1350 publications have been published receiving 124973 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this article, three distinct intuitive notions of centrality are uncovered and existing measures are refined to embody these conceptions, and the implications of these measures for the experimental study of small groups are examined.
Abstract: The intuitive background for measures of structural centrality in social networks is reviewed and existing measures are evaluated in terms of their consistency with intuitions and their interpretability. Three distinct intuitive conceptions of centrality are uncovered and existing measures are refined to embody these conceptions. Three measures are developed for each concept, one absolute and one relative measure of the centrality of positions in a network, and one reflecting the degree of centralization of the entire network. The implications of these measures for the experimental study of small groups is examined.
13,104 citations
[...]
TL;DR: A key claim made in this paper is that centrality measures can be regarded as generating expected values for certain kinds of node outcomes given implicit models of how traffic flows, and that this provides a new and useful way of thinking about centrality.
Abstract: Centrality measures, or at least popular interpretations of these measures, make implicit assumptions about the manner in which traffic flows through a network. For example, some measures count only geodesic paths, apparently assuming that whatever flows through the network only moves along the shortest possible paths. This paper lays out a typology of network flows based on two dimensions of variation, namely the kinds of trajectories that traffic may follow (geodesics, paths, trails, or walks) and the method of spread (broadcast, serial replication, or transfer). Measures of centrality are then matched to the kinds of flows that they are appropriate for. Simulations are used to examine the relationship between type of flow and the differential importance of nodes with respect to key measurements such as speed of reception of traffic and frequency of receiving traffic. It is shown that the off-the-shelf formulas for centrality measures are fully applicable only for the specific flow processes they are designed for, and that when they are applied to other flow processes they get the “wrong” answer. It is noted that the most commonly used centrality measures are not appropriate for most of the flows we are routinely interested in. A key claim made in this paper is that centrality measures can be regarded as generating expected values for certain kinds of node outcomes (such as speed and frequency of reception) given implicit models of how traffic flows, and that this provides a new and useful way of thinking about centrality. © 2004 Elsevier B.V. All rights reserved.
2,490 citations
[...]
TL;DR: In this paper, the authors show that some factors are better indicators of social connections than others, and that these indicators vary between user populations, and provide potential applications in automatically inferring real world connections and discovering, labeling, and characterizing communities.
Abstract: The Internet has become a rich and large repository of information about us as individuals. Anything from the links and text on a user’s homepage to the mailing lists the user subscribes to are reflections of social interactions a user has in the real world. In this paper we devise techniques and tools to mine this information in order to extract social networks and the exogenous factors underlying the networks’ structure. In an analysis of two data sets, from Stanford University and the Massachusetts Institute of Technology (MIT), we show that some factors are better indicators of social connections than others, and that these indicators vary between user populations. Our techniques provide potential applications in automatically inferring real world connections and discovering, labeling, and characterizing communities.
2,313 citations
[...]
TL;DR: Estimation techniques are developed for the special case of a single relation social network, with blocks specified a priori, and an extension of the model allows for tendencies toward reciprocation of ties beyond those explained by the partition.
Abstract: A stochastic model is proposed for social networks in which the actors in a network are partitioned into subgroups called blocks. The model provides a stochastic generalization of the blockmodel. Estimation techniques are developed for the special case of a single relation social network, with blocks specified a priori. An extension of the model allows for tendencies toward reciprocation of ties beyond those explained by the partition. The extended model provides a one degree-of-freedom test of the model. A numerical example from the social network literature is used to illustrate the methods.
2,233 citations
[...]
TL;DR: This paper proposes generalizations that combine tie strength and node centrality, and illustrates the benefits of this approach by applying one of them to Freeman’s EIES dataset.
Abstract: Ties often have a strength naturally associated with them that differentiate them from each other. Tie strength has been operationalized as weights. A few network measures have been proposed for weighted networks, including three common measures of node centrality: degree, closeness, and betweenness. However, these generalizations have solely focused on tie weights, and not on the number of ties, which was the central component of the original measures. This paper proposes generalizations that combine both these aspects. We illustrate the benefits of this approach by applying one of them to Freeman’s EIES dataset.
2,215 citations