scispace - formally typeset
Search or ask a question

Showing papers in "Space Science Reviews in 2019"


Journal ArticleDOI
Vassilis Angelopoulos1, P. Cruce1, Alexander Drozdov1, Eric Grimes1, N. Hatzigeorgiu2, D. A. King2, Davin Larson2, James W. Lewis2, J. M. McTiernan2, D. A. Roberts3, C. L. Russell1, Tomoaki Hori4, Yoshiya Kasahara5, Atsushi Kumamoto6, Ayako Matsuoka, Yukinaga Miyashita7, Yoshizumi Miyoshi4, I. Shinohara, Mariko Teramoto4, Jeremy Faden, Alexa Halford8, Matthew D. McCarthy9, Robyn Millan10, John Sample11, David M. Smith12, L. A. Woodger10, Arnaud Masson, A. A. Narock3, Kazushi Asamura, T. F. Chang4, C. Y. Chiang13, Yoichi Kazama14, Kunihiro Keika15, S. Matsuda4, Tomonori Segawa4, Kanako Seki15, Masafumi Shoji4, Sunny W. Y. Tam13, Norio Umemura4, B. J. Wang14, B. J. Wang16, Shiang-Yu Wang14, Robert J. Redmon17, Juan V. Rodriguez18, Juan V. Rodriguez17, Howard J. Singer17, Jon Vandegriff19, S. Abe20, Masahito Nose4, Masahito Nose21, Atsuki Shinbori4, Yoshimasa Tanaka22, S. UeNo21, L. Andersson23, P. Dunn2, Christopher M. Fowler23, Jasper Halekas24, Takuya Hara2, Yuki Harada21, Christina O. Lee2, Robert Lillis2, David L. Mitchell2, Matthew R. Argall25, Kenneth R. Bromund3, James L. Burch26, Ian J. Cohen19, Michael Galloy27, Barbara L. Giles3, Allison Jaynes24, O. Le Contel28, Mitsuo Oka2, T. D. Phan2, Brian Walsh29, Joseph Westlake19, Frederick Wilder23, Stuart D. Bale2, Roberto Livi2, Marc Pulupa2, Phyllis Whittlesey2, A. DeWolfe23, Bryan Harter23, E. Lucas23, U. Auster30, John W. Bonnell2, Christopher Cully31, Eric Donovan31, Robert E. Ergun23, Harald U. Frey2, Brian Jackel31, A. Keiling2, Haje Korth19, J. P. McFadden2, Yukitoshi Nishimura29, Ferdinand Plaschke32, P. Robert28, Drew Turner8, James M. Weygand1, Robert M. Candey3, R. C. Johnson3, T. Kovalick3, M. H. Liu3, R. E. McGuire3, Aaron Breneman33, Kris Kersten33, P. Schroeder2 
TL;DR: The SPEDAS development history, goals, and current implementation are reviewed, and its “modes of use” are explained with examples geared for users and its technical implementation and requirements with software developers in mind are outlined.
Abstract: With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform ( www.spedas.org ), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.

371 citations


Journal ArticleDOI
TL;DR: In a growing number of galaxy clusters diffuse extended radio sources have been found. as mentioned in this paper classified diffuse cluster radio sources into radio halos, cluster radio shocks (relics), and revived AGN fossil plasma sources.
Abstract: In a growing number of galaxy clusters diffuse extended radio sources have been found. These sources are not directly associated with individual cluster galaxies. The radio emission reveal the presence of cosmic rays and magnetic fields in the intracluster medium (ICM). We classify diffuse cluster radio sources into radio halos, cluster radio shocks (relics), and revived AGN fossil plasma sources. Radio halo sources can be further divided into giant halos, mini-halos, and possible “intermediate” sources. Halos are generally positioned at cluster center and their brightness approximately follows the distribution of the thermal ICM. Cluster radio shocks (relics) are polarized sources mostly found in the cluster’s periphery. They trace merger induced shock waves. Revived fossil plasma sources are characterized by their radio steep-spectra and often irregular morphologies. In this review we give an overview of the properties of diffuse cluster radio sources, with an emphasis on recent observational results. We discuss the resulting implications for the underlying physical acceleration processes that operate in the ICM, the role of relativistic fossil plasma, and the properties of ICM shocks and magnetic fields. We also compile an updated list of diffuse cluster radio sources which will be available on-line ( http://galaxyclusters.com ). We end this review with a discussion on the detection of diffuse radio emission from the cosmic web.

347 citations


Journal ArticleDOI
TL;DR: The science goals of the experiment and the rationale used to define its requirements are described, and the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors are described.
Abstract: By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of $\sim 2500$ at 1 Hz and $\sim 200\,000$ at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of $M_{{w}} \sim 3$ at $40^{\circ}$ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.

255 citations


Journal ArticleDOI
TL;DR: The auxiliary payload sensor suite (APSS) as mentioned in this paper includes a magnetometer, an atmospheric pressure sensor, and a pair of wind and air temperature sensors for the InSight mission to Mars.
Abstract: NASA’s InSight mission to Mars will measure seismic signals to determine the planet’s interior structure. These highly sensitive seismometers are susceptible to corruption of their measurements by environmental changes. Magnetic fields, atmosphere pressure changes, and local winds can all induce apparent changes in the seismic records that are not due to propagating ground motions. Thus, InSight carries a set of sensors called the Auxiliary Payload Sensor Suite (APSS) which includes a magnetometer, an atmospheric pressure sensor, and a pair of wind and air temperature sensors. In the case of the magnetometer, knowledge of the amplitude of the fluctuating magnetic field at the InSight lander will allow the separation of seismic signals from potentially interfering magnetic signals of either natural or spacecraft origin. To acquire such data, a triaxial fluxgate magnetometer was installed on the deck of the lander to obtain magnetic records at the same cadence as the seismometer. Similarly, a highly sensitive pressure sensor is carried by InSight to enable the removal of local ground-surface tilts due to advecting pressure perturbations. Finally, the local winds (speed and direction) and air temperature are estimated using a hot-film wind sensor with heritage from REMS on the Curiosity rover. When winds are too high, seismic signals can be ignored or discounted. Herein we describe the APSS sensor suite, the test programs for its components, and the possible additional science investigations it enables.

116 citations


Journal ArticleDOI
TL;DR: The utility of the thermal, kinematic, relativistic, non-thermal, and polarised SZ effects for studies of galaxy clusters and other large scale structures, incorporating the many advances over the past two decades that have impacted SZ theory, simulations, and observations, is reviewed in this article.
Abstract: In recent years, observations of the Sunyaev-Zeldovich (SZ) effect have had significant cosmological implications and have begun to serve as a powerful and independent probe of the warm and hot gas that pervades the Universe. As a few pioneering studies have already shown, SZ observations both complement X-ray observations—the traditional tool for studying the intra-cluster medium—and bring unique capabilities for probing astrophysical processes at high redshifts and out to the low-density regions in the outskirts of galaxy clusters. Advances in SZ observations have largely been driven by developments in centimetre-, millimetre-, and submillimetre-wave instrumentation on ground-based facilities, with notable exceptions including results from the Planck satellite. Here we review the utility of the thermal, kinematic, relativistic, non-thermal, and polarised SZ effects for studies of galaxy clusters and other large scale structures, incorporating the many advances over the past two decades that have impacted SZ theory, simulations, and observations. We also discuss observational results, techniques, and challenges, and aim to give an overview and perspective on emerging opportunities, with the goal of highlighting some of the exciting new directions in this field.

116 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review the current knowledge of the thickness of the crust, the diameter and state of the core, seismic attenuation, heat flow, and interior composition.
Abstract: The Interior exploration using Seismic Investigations, Geodesy, and Heat Trans- port (InSight) Mission will focus on Mars’ interior structure and evolution. The basic structure of crust, mantle, and core form soon after accretion. Understanding the early differentiation process on Mars and how it relates to bulk composition is key to improving our understanding of this process on rocky bodies in our solar system, as well as in other solar systems. Current knowledge of differentiation derives largely from the layers observed via seismology on the Moon. However, the Moon’s much smaller diameter make it a poor analog with respect to interior pressure and phase changes. In this paper we review the current knowledge of the thickness of the crust, the diameter and state of the core, seismic attenuation, heat flow, and interior composition. InSight will conduct the first seismic and heat flow measurements of Mars, as well as more precise geodesy. These data reduce uncertainty in crustal thickness, core size and state, heat flow, seismic activity and meteorite impact rates by a factor of 3–10× relative to previous estimates. Based on modeling of seismic wave propagation, we can further constrain interior temperature, composition, and the location of phase changes. By combining heat flow and a well constrained value of crustal thickness, we can estimate the distribution of heat producing elements between the crust and mantle. All of these quantities are key inputs to models of interior convection and thermal evolution that predict the processes that control subsurface temperature, rates of volcanism, plume distribution and stability, and convective state. Collectively these factors offer strong controls on the overall evolution of the geology and habitability of Mars.

116 citations


Journal ArticleDOI
TL;DR: Recently, a renewed effort on the part of the community to obtain a definitive measure of the true cluster mass scale has been made as mentioned in this paper, with numerical simulations being the cornerstone of this effort.
Abstract: The total mass of a galaxy cluster is one of its most fundamental properties. Together with the redshift, the mass links observation and theory, allowing us to use the cluster population to test models of structure formation and to constrain cosmological parameters. Building on the rich heritage from X-ray surveys, new results from Sunyaev-Zeldovich and optical surveys have stimulated a resurgence of interest in cluster cosmology. These studies have generally found fewer clusters than predicted by the baseline Planck $\varLambda$ CDM model, prompting a renewed effort on the part of the community to obtain a definitive measure of the true cluster mass scale. Here we review recent progress on this front. Our theoretical understanding continues to advance, with numerical simulations being the cornerstone of this effort. On the observational side, new, sophisticated techniques are being deployed in individual mass measurements and to account for selection biases in cluster surveys. We summarise the state of the art in cluster mass estimation methods and the systematic uncertainties and biases inherent in each approach, which are now well identified and understood, and explore how current uncertainties propagate into the cosmological parameter analysis. We discuss the prospects for improvements to the measurement of the mass scale using upcoming multi-wavelength data, and the future use of the cluster population as a cosmological probe.

115 citations


Journal ArticleDOI
TL;DR: Two mechanisms for the generation of the pre-onset current sheet are discussed, namely magnetic flux addition to the tail lobes, or other high-latitude perturbations, and magnetic flux evacuation from the near-Earth tail associated with dayside reconnection.
Abstract: Modes and manifestations of the explosive activity in the Earth’s magnetotail, as well as its onset mechanisms and key pre-onset conditions are reviewed. Two mechanisms for the generation of the pre-onset current sheet are discussed, namely magnetic flux addition to the tail lobes, or other high-latitude perturbations, and magnetic flux evacuation from the near-Earth tail associated with dayside reconnection. Reconnection onset may require stretching and thinning of the sheet down to electron scales. It may also start in thicker sheets in regions with a tailward gradient of the equatorial magnetic field $B_{z}$ ; in this case it begins as an ideal-MHD instability followed by the generation of bursty bulk flows and dipolarization fronts. Indeed, remote sensing and global MHD modeling show the formation of tail regions with increased $B_{z}$ , prone to magnetic reconnection, ballooning/interchange and flapping instabilities. While interchange instability may also develop in such thicker sheets, it may grow more slowly compared to tearing and cause secondary reconnection locally in the dawn-dusk direction. Post-onset transients include bursty flows and dipolarization fronts, micro-instabilities of lower-hybrid-drift and whistler waves, as well as damped global flux tube oscillations in the near-Earth region. They convert the stretched tail magnetic field energy into bulk plasma acceleration and collisionless heating, excitation of a broad spectrum of plasma waves, and collisional dissipation in the ionosphere. Collisionless heating involves ion reflection from fronts, Fermi, betatron as well as other, non-adiabatic, mechanisms. Ionospheric manifestations of some of these magnetotail phenomena are discussed. Explosive plasma phenomena observed in the laboratory, the solar corona and solar wind are also discussed.

96 citations


Journal ArticleDOI
TL;DR: Early Mars climate research has well-defined goals (MEPAG 2018). Achieving these goals requires geologists and climate modelers to coordinate. Coordination is easier if results are expressed in terms of well defined parameters as discussed by the authors.
Abstract: Early Mars climate research has well-defined goals (MEPAG 2018). Achieving these goals requires geologists and climate modelers to coordinate. Coordination is easier if results are expressed in terms of well-defined parameters. Key parameters include the following quantitative geologic constraints. (1) Cumulative post-3.4 Ga precipitation-sourced water runoff in some places exceeded $1~\mbox{km}$ column. (2) There is no single Early Mars climate problem: the traces of ≥2 river-forming periods are seen. Relative to rivers that formed earlier in Mars history, rivers that formed later in Mars history are found preferentially at lower elevations, and show a stronger dependence on latitude. (3) The duration of the longest individual river-forming climate was ${>}(10^{2}\mbox{--}10^{3})~\mbox{yr}$ , based on paleolake hydrology. (4) Peak runoff production was ${>}0.1~\mbox{mm}/\mbox{hr}$ . However, (5) peak runoff production was intermittent, sustained (in a given catchment) for only <10% of the duration of river-forming climates. (6) The cumulative number of wet years during the valley-network-forming period was ${>}10^{5}~\mbox{yr}$ . (7) Post-Noachian light-toned, layered sedimentary rocks took ${>}10^{7}~\mbox{yr}$ to accumulate. However, (8) an “average” place on Mars saw water for ${<}10^{7}~\mbox{yr}$ after the Noachian, suggesting that the river-forming climates were interspersed with long globally-dry intervals. (9) Geologic proxies for Early Mars atmospheric pressure indicate pressure was not less than 0.012 bar but not much more than 1 bar. A truth table of these geologic constraints versus currently published climate models shows that the late persistence of river-forming climates, combined with the long duration of individual lake-forming climates, is a challenge for most models.

95 citations


Journal ArticleDOI
TL;DR: The Atmosphere-Space Interactions Monitor (ASIM) is an instrument suite on the International Space Station (ISS) for measurements of lightning, Transient Luminous Events (TLEs) and Terrestrial Gamma-ray Flashes (TGFs) as mentioned in this paper.
Abstract: The Atmosphere-Space Interactions Monitor (ASIM) is an instrument suite on the International Space Station (ISS) for measurements of lightning, Transient Luminous Events (TLEs) and Terrestrial Gamma-ray Flashes (TGFs). Developed in the framework of the European Space Agency (ESA), it was launched April 2, 2018 on the SpaceX CRS-14 flight to the ISS. ASIM was mounted on an external platform of ESA’s Columbus module eleven days later and is planned to take measurements during minimum 3 years. The instruments are an x- and gamma-ray monitor measuring photons from 15 keV to 20 MeV, and an array of three photometers and two cameras measuring in bands at: 180–250 nm, 337 nm and 777.4 nm. Additional objectives that can be addressed with the instruments relate to space physics like aurorae and meteors, and to Earth observation such as dust- and aerosol effects on cloud electrification. The paper describes the scientific objectives of the ASIM mission, the instruments, the mission architecture and the international collaboration supported by the ASIM Science Data Centre. ASIM is the first space mission with a comprehensive suite of instruments designed to measure TLEs and TGFs. Two companion papers describe the instruments in more detail (Ostgaard et al. in Space Sci. Rev., 2019; Chanrion et al. in Space Sci. Rev., 2019).

93 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a statistical analysis of solar coronal mass ejections (CMEs) based on 23 years of quasi-continuous observations with the LASCO coronagraph, thus covering two complete Solar Cycles (23 and 24).
Abstract: We present a statistical analysis of solar coronal mass ejections (CMEs) based on 23 years of quasi-continuous observations with the LASCO coronagraph, thus covering two complete Solar Cycles (23 and 24). We make use of five catalogs, one manual (CDAW) and four automated (ARTEMIS, CACTus, SEEDS, and CORIMP), to characterize the temporal evolutions and distributions of their properties: occurrence and mass rates, waiting times, periodicities, angular width, latitude, speed, acceleration and kinetic energy. Our analysis points to inevitable discrepancies between catalogs due to the complex nature of CMEs and to the different techniques implemented to detect them, but also to large areas of convergence that are critically important to ascertain the reliability of the results. The temporal variations of these properties are compared to four indices/proxies of solar activity: the radio flux at 10.7 cm (F10.7), the international sunspot number (SSN), the sunspot area (SSA), and the total magnetic field (TMF), either globally or separately in the northern and southern hemispheres in the case of the last three. We investigate the association of CMEs with flares, erupting prominences, active regions and streamers. We find that the CME occurrence and mass rates globally track the indices/proxies of solar activity with no time lag, prominently the radio flux F10.7, but the linear relationships were different during the two solar cycles, implying that the CME rates were relatively larger during SC 24 than during SC 23. However, there exists a pronounced divergence of the CME rates in the northern hemisphere during SC 24 as these rates were substantially larger than predicted by the temporal variation of the sunspot number. The distribution of kinetic energy follows a log-normal law and that of angular width follows an exponential law implying that they are random and independent. The distribution of waiting time (WTD) has a long power-law tail extending from 3 to 100 hr with a power-law index which varies with the solar cycle, thus reflecting the temporal variability of the process of CME formation. There is very limited evidence for periodicities in the occurrence and mass rates of CMEs, a striking feature being the dichotomy between the two hemispheres. Rather weak correlations are present among the various CME parameters and particularly none between speed and acceleration. The association of CMEs with flares and erupting prominences involves only a few percents of the overall population of CMEs but the associated CMEs have distinctly larger mass, speed, kinetic energy and angular width. A more pronounced association is found with active regions but the overwhelming one is with streamers further confirmed by the similarity between the heliolatitudinal distribution of CMEs and that of the electron density reconstructed from time-dependent tomographic inversion. We find no evidence of bimodality in the distributions of physical parameters that would support the existence of two classes, particularly that based on speed and acceleration, the distributions thus favoring a continuum of properties. There exists an excess of narrows CMEs which however does not define a special class. These narrow CMEs are likely associated with the ubiquitous mini-filaments eruptions and with mini flux ropes originating from small magnetic bipoles, the disruption mechanisms being similar to those launching larger CMEs. This supports the concept that CMEs at large arise from closed-field coronal regions at both large and small scales.

Journal ArticleDOI
TL;DR: In this article, the authors review the observational and theoretical perspectives on thermal instabilities in galactic atmospheres and the evidence that AGN heating is able to roughly balance the atmospheric cooling.
Abstract: Most galaxies comparable to or larger than the mass of the Milky Way host hot, X-ray emitting atmospheres, and many such galaxies are radio sources. Hot atmospheres and radio jets and lobes are the ingredients of radio-mechanical active galactic nucleus (AGN) feedback. While a consensus has emerged that such feedback suppresses cooling of hot cluster atmospheres, less attention has been paid to massive galaxies where similar mechanisms are at play. Observation indicates that the atmospheres of elliptical and S0 galaxies were accreted externally during the process of galaxy assembly and augmented significantly by stellar mass loss. Their atmospheres have entropy and cooling time profiles that are remarkably similar to those of central cluster galaxies. About half display filamentary or disky nebulae of cool and cold gas, much of which has likely cooled from the hot atmospheres. We review the observational and theoretical perspectives on thermal instabilities in galactic atmospheres and the evidence that AGN heating is able to roughly balance the atmospheric cooling. Such heating and cooling may be regulating star formation in all massive spheroids at late times.

Journal ArticleDOI
TL;DR: In this paper, the authors review the current state of the art in observational and theoretical understanding of cluster outskirts, and discuss future prospects for exploration using newly planned and proposed observatories.
Abstract: As the largest virialized structures in the universe, galaxy clusters continue to grow and accrete matter from the cosmic web. Due to the low gas density in the outskirts of clusters, measurements are very challenging, requiring extremely sensitive telescopes across the entire electromagnetic spectrum. Observations using X-rays, the Sunyaev–Zeldovich effect, and weak lensing and galaxy distributions from the optical band, have over the last decade helped to unravel this exciting new frontier of cluster astrophysics, where the infall and virialization of matter takes place. Here, we review the current state of the art in our observational and theoretical understanding of cluster outskirts, and discuss future prospects for exploration using newly planned and proposed observatories.

Journal ArticleDOI
TL;DR: In this paper, Nunn et al. reviewed and discussed the Apollo lunar seismic data with the aim of creating a new reference seismic data set for future use by the community and assessed the influence of model parameterisation and error propagation on inverted seismic velocity models, where three different parameterisations are considered.
Abstract: An international team of researchers gathered, with the support of the International Space Science Institute (ISSI), (1) to review seismological investigations of the lunar interior from the Apollo-era and up until the present and (2) to re-assess our level of knowledge and uncertainty on the interior structure of the Moon. A companion paper (Nunn et al. in Space Sci. Rev., submitted) reviews and discusses the Apollo lunar seismic data with the aim of creating a new reference seismic data set for future use by the community. In this study, we first review information pertinent to the interior of the Moon that has become available since the Apollo lunar landings, particularly in the past ten years, from orbiting spacecraft, continuing measurements, modeling studies, and laboratory experiments. Following this, we discuss and compare a set of recent published models of the lunar interior, including a detailed review of attenuation and scattering properties of the Moon. Common features and discrepancies between models and moonquake locations provide a first estimate of the error bars on the various seismic parameters. Eventually, to assess the influence of model parameterisation and error propagation on inverted seismic velocity models, an inversion test is presented where three different parameterisations are considered. For this purpose, we employ the travel time data set gathered in our companion paper (Nunn et al. in Space Sci. Rev., submitted). The error bars of the inverted seismic velocity models demonstrate that the Apollo lunar seismic data mainly constrain the upper- and mid-mantle structure to a depth of ∼1200 km. While variable, there is some indication for an upper mantle low-velocity zone (depth range 100–250 km), which is compatible with a temperature gradient around 1.7 ∘C/km. This upper mantle thermal gradient could be related to the presence of the thermally anomalous region known as the Procellarum Kreep Terrane, which contains a large amount of heat producing elements.

Journal ArticleDOI
TL;DR: The MMIA is a suite of optical sensors mounted on an external platform of the European Space Agency’s Columbus Module on the International Space Station and the aspects that make it an essential tool for the study of thunderstorms are described.
Abstract: The Modular Multispectral Imaging Array (MMIA) is a suite of optical sensors mounted on an external platform of the European Space Agency’s Columbus Module on the International Space Station. The MMIA, together with the Modular X- and Gamma- ray Sensor (MXGS), are the two main instruments forming the Atmosphere-Space Interactions Monitor (ASIM). The primary scientific objectives of the ASIM mission are to study thunderstorm electrical activity such as lightning, Transient Luminous Emissions (TLEs) and Terrestrial Gamma-ray Flashes (TGFs) by observing the associated emissions in the UV, near-infrared, x- and gamma-ray spectral bands. The MMIA includes two cameras imaging in 337 nm and 777.4 nm, at up to 12 frames per second, and three high-speed photometers at 180–230 nm, 337 nm and 777.4 nm, sampling at rates up to 100 kHz. The paper describes the MMIA and the aspects that make it an essential tool for the study of thunderstorms. The mission architecture is described in Neubert et al. (Space Sci. Rev. 215:26, 2019, this issue) and the MXGS instruments in Ostgaard et al. (Space Sci. Rev. 215:23, 2019, this issue).

Journal ArticleDOI
TL;DR: A review of the main physical properties of cometary nuclei can be found in this article, focusing on the thermal, mechanical, structural, and dielectric properties, emphasising the progress made during the Rosetta mission.
Abstract: The physical properties of cometary nuclei observed today relate to their complex history and help to constrain their formation and evolution. In this article, we review some of the main physical properties of cometary nuclei and focus in particular on the thermal, mechanical, structural and dielectric properties, emphasising the progress made during the Rosetta mission. Comets have a low density of $480 \pm 220~\mbox{kg}\,\mbox{m}^{-3}$ and a low permittivity of 1.9–2.0, consistent with a high porosity of 70–80%, are weak with a very low global tensile strength $<100$ Pa, and have a low bulk thermal inertia of $0\mbox{--}60~\mbox{J}\,\mbox{K}^{-1}\,\mbox{m}^{-2}\,\mbox{s}^{-1/2}$ that allowed them to preserve highly volatiles species (e.g. CO, CO2, CH4, N2) into their interior since their formation. As revealed by 67P/Churyumov-Gerasimenko, the above physical properties vary across the nucleus, spatially at its surface but also with depth. The broad picture is that the bulk of the nucleus consists of a weakly bonded, rather homogeneous material that preserved primordial properties under a thin shell of processed material, and possibly covered by a granular material; this cover might in places reach a thickness of several meters. The properties of the top layer (the first meter) are not representative of that of the bulk nucleus. More globally, strong nucleus heterogeneities at a scale of a few meters are ruled out on 67P’s small lobe.

Journal ArticleDOI
TL;DR: In this paper, the distribution of interplanetary dust and meteoroids in the solar system is studied. But the authors focus on the current state and the dynamical behavior of the Solar system.
Abstract: Interplanetary dust particles and meteoroids mostly originate from comets and asteroids. Understanding their distribution in the Solar system, their dynamical behavior and their properties, sheds light on the current state and the dynamical behavior of the Solar system. Dust particles can endanger Earth-orbiting satellites and deep-space probes, and a good understanding of the spatial density and velocity distribution of dust and meteoroids in the Solar system is important for designing proper spacecraft shielding. The study of interplanetary dust and meteoroids provides clues to the formation of the Solar system. Particles having formed 4.5 billion years ago can survive planetary accretion and those that survived until now did not evolve significantly since then. Meteoroids and interplanetary dust can be observed by measuring the intensity and polarization of the zodiacal light, by observing meteors entering the Earth’s atmosphere, by collecting them in the upper atmosphere, polar ices and snow, and by detecting them with in-situ detectors on space probes.

Journal ArticleDOI
TL;DR: The past and recent approaches in space data analysis for the determination of a structure’s dimensionality and the building of D-based coordinate system and a proper moving frame are reviewed to provide a comprehensive understanding of these analysis tools.
Abstract: In the analysis of in-situ space plasma and field data, an establishment of the coordinate system and the frame of reference, helps us greatly simplify a given problem and provides the framework that enables a clear understanding of physical processes by ordering the experimental data. For example, one of the most important tasks of space data analysis is to compare the data with simulations and theory, which is facilitated by an appropriate choice of coordinate system and reference frame. While in simulations and theoretical work the establishment of the coordinate system (generally based on the dimensionality or dimension number of the field quantities being studied) and the reference frame (normally moving with the structure of interest) is often straightforward, in space data analysis these are not defined a priori, and need to be deduced from an analysis of the data itself. Although various ways of building a dimensionality-based (D-based) coordinate system (i.e., one that takes account of the dimensionality, e.g., 1-D, 2-D, or 3-D, of the observed system/field), and a reference frame moving along with the structure have been used in space plasma data analysis for several decades, in recent years some noteworthy approaches have been proposed. In this paper, we will review the past and recent approaches in space data analysis for the determination of a structure’s dimensionality and the building of D-based coordinate system and a proper moving frame, from which one can directly compare with simulations and theory. Along with the determination of such coordinate systems and proper frame, the variant axis/normal of 1-D (or planar) structures, and the invariant axis of 2-D structures are determined and the proper frame velocity for moving structures is found. These are found either directly or indirectly through the definition of dimensionality. We therefore emphasize that the determination of dimensionality of a structure is crucial for choosing the most appropriate analysis approach, and failure to do so might lead to misinterpretation of the data. Ways of building various kinds of coordinate systems and reference frames are summarized and compared here, to provide a comprehensive understanding of these analysis tools. In addition, the method of building these systems and frames is shown not only to be useful in space data analysis, but also may have the potential ability for simulation/laboratory data analysis and some practical applications.

Journal ArticleDOI
TL;DR: A review of the major scientific advances made by Cassini's Titan Radar Mapper (RADAR) during 13 years of exploration of Saturn and its moons can be found in this paper.
Abstract: Titan was a mostly unknown world prior to the Cassini spacecraft’s arrival in July 2004. We review the major scientific advances made by Cassini’s Titan Radar Mapper (RADAR) during 13 years of Cassini’s exploration of Saturn and its moons. RADAR measurements revealed Titan’s surface geology, observed lakes and seas of mostly liquid methane in the polar regions, measured the depth of several lakes and seas, detected temporal changes on its surface, and provided key evidence that Titan contains an interior ocean. As a result of the Cassini mission, Titan has gone from an uncharted world to one that exhibits a variety of Earth-like geologic processes and surface-atmosphere interactions. Titan has also joined the ranks of “ocean worlds” along with Enceladus and Europa, which are prime targets for astrobiological research.

Journal ArticleDOI
TL;DR: In this article, the velocity structure of the diffuse X-ray emitting intra-cluster medium (ICM) remains one of the last missing key ingredients in understanding the microphysical properties of these hot baryons and constraining our models of the growth and evolution of structure on the largest scales in the Universe.
Abstract: The detailed velocity structure of the diffuse X-ray emitting intra-cluster medium (ICM) remains one of the last missing key ingredients in understanding the microphysical properties of these hot baryons and constraining our models of the growth and evolution of structure on the largest scales in the Universe. Direct measurements of the gas velocities from the widths and shifts of X-ray emission lines were recently provided for the central region of the Perseus Cluster of galaxies by Hitomi, and upcoming high-resolution X-ray microcalorimeters onboard XRISM and Athena are expected to extend these studies to many more systems. In the mean time, several other direct and indirect methods have been proposed for estimating the velocity structure in the ICM, ranging from resonant scattering to X-ray surface brightness fluctuation analysis, the kinematic Sunyaev-Zeldovich effect, or using optical line emitting nebulae in the brightest cluster galaxies as tracers of the motions of the ambient plasma. Here, we review and compare the existing estimates of the velocities of the hot baryons, as well as the various overlapping physical processes that drive motions in the ICM, and discuss the implications of these measurements for constraining the viscosity and identifying the source of turbulence in clusters of galaxies.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss five broad topics in advanced curation that are critical to improving sample acquisition and curation practices, including best practices for monitoring and testing of curation infrastructure for inorganic, organic, and biological contamination.
Abstract: Just as geological samples from Earth record the natural history of our planet, astromaterials hold the natural history of our solar system and beyond. Astromaterials acquisition and curation practices have direct consequences on the contamination levels of astromaterials and hence the types of questions that can be answered about our solar system and the degree of precision that can be expected of those answers. Advanced curation was developed as a cross-disciplinary field to improve curation and acquisition practices in existing astromaterials collections and for future sample return activities, including meteorite and cosmic dust samples that are collected on Earth. These goals are accomplished through research and development of new innovative technologies and techniques for sample collection, handling, characterization, analysis, and curation of astromaterials. In this contribution, we discuss five broad topics in advanced curation that are critical to improving sample acquisition and curation practices, including (1) best practices for monitoring and testing of curation infrastructure for inorganic, organic, and biological contamination; (2) requirements for storage, processing, and sample handling capabilities for future sample return missions, along with recent progress in these areas; (3) advancements and improvements in astromaterials acquisition capabilities on Earth (i.e., the collection of meteorites and cosmic dust); (4) the importance of contamination knowledge strategies for maximizing the science returns of sample-return missions; and (5) best practices and emerging capabilities for the basic characterization and preliminary examination of astromaterials. The primary result of advanced curation research is to both reduce and quantify contamination of astromaterials and preserve the scientific integrity of all samples from mission inception to secure delivery of samples to Earth-based laboratories for in-depth scientific analysis. Advanced curation serves as an important science-enabling activity, and the collective lessons learned from previous spacecraft missions and the results of advanced curation research will work in tandem to feed forward into better spacecraft designs and enable more stringent requirements for future sample return missions and Earth-based sample acquisition.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the different possible scenarios for the emergence of life, to critically assess them and, according to the conclusions they reach, to analyze whether similar processes could have been conducive to independent origins of life on the several icy moons of the Solar System.
Abstract: The aim of this article is to provide the reader with an overview of the different possible scenarios for the emergence of life, to critically assess them and, according to the conclusions we reach, to analyze whether similar processes could have been conducive to independent origins of life on the several icy moons of the Solar System. Instead of directly proposing a concrete and unequivocal cradle of life on Earth, we focus on describing the different requirements that are arguably needed for the transition between non-life to life. We approach this topic from geological, biological, and chemical perspectives with the aim of providing answers in an integrative manner. We reflect upon the most prominent origins hypotheses and assess whether they match the aforementioned abiogenic requirements. Based on the conclusions extracted, we address whether the conditions for abiogenesis are/were met in any of the oceanic icy moons.

Journal ArticleDOI
TL;DR: In this article, the authors describe the state of the art in European radioisotope thermoelectric generators and radiosotope heater units and outline the technical challenges and multidisciplinary skills required to develop what is a world leading, original, significant and transformative technology solution for planetary science and exploration missions from the mid 2020s onwards.
Abstract: Radioisotope power systems utilising americium-241 as a source of heat have been under development in Europe as part of a European Space Agency funded programme since 2009. The aim is to develop all of the building blocks that would enable Europe to launch and operate deep space and planetary missions in environments where use of solar power or alternative power generation technologies is challenging. Although some technical and policy work activity predate the ESA programme, the maturity of the technology has now reached a level that it can be incorporated in mission studies and roadmaps targeting the period from the mid 2020s onwards. This paper describes the state of the art in European radioisotope thermoelectric generators and radioisotope heater units. This paper includes: the evolution of the technical programme in detail; descriptions of the design; evolution of RTG and RHU devices from laboratory prototypes to more advanced fully functional systems; and experimental data obtained to date. This paper also outlines the technical challenges and multidisciplinary skills required to develop what is a world leading, original, significant and transformative technology solution for planetary science and exploration missions from the mid 2020s onwards.

Journal ArticleDOI
TL;DR: The Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth as mentioned in this paper, and it provides a rich archive of the past 4.5 billion years of evolution of the inner Solar System.
Abstract: The Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth. Scientific investigations of the first lunar samples returned by the Apollo 11 astronauts 50 years ago transformed the way we think most planetary bodies form and evolve. Identification of anorthositic clasts in Apollo 11 samples led to the formulation of the magma ocean concept, and by extension the idea that the Moon experienced large-scale melting and differentiation. This concept of magma oceans would soon be applied to other terrestrial planets and large asteroidal bodies. Dating of basaltic fragments returned from the Moon also showed that a relatively small planetary body could sustain volcanic activity for more than a billion years after its formation. Finally, studies of the lunar regolith showed that in addition to containing a treasure trove of the Moon’s history, it also provided us with a rich archive of the past 4.5 billion years of evolution of the inner Solar System. Further investigations of samples returned from the Moon over the past five decades led to many additional discoveries, but also raised new and fundamental questions that are difficult to address with currently available samples, such as those related to the age of the Moon, duration of lunar volcanism, the lunar paleomagnetic field and its intensity, and the record on the Moon of the bombardment history during the first billion years of evolution of the Solar System. In this contribution, we review the information we currently have on some of the key science questions related to the Moon and discuss how future sample-return missions could help address important knowledge gaps.

Journal ArticleDOI
TL;DR: In this paper, a detailed model of the collisionless processes governing the creation of non-thermal distributions of electrons and protons in cluster shocks is presented, together with the macroscopic view of the large-scale distribution of cosmic rays suggested by modern cosmological simulations.
Abstract: Galaxy clusters grow by gas accretion, mostly from mergers of substructures, which release powerful shock waves into cosmic plasmas and convert a fraction of kinetic energy into thermal energy, amplification of magnetic fields and into the acceleration of energetic particles. The modeling of the radio signature of cosmic shocks, combined with the lack of detected $\gamma $ -rays from cosmic ray (CR) protons, poses challenges to our understanding of how cosmic rays get accelerated and stored in the intracluster medium. Here we review the injection of CRs by cosmic shocks of different strengths, combining the detailed “microscopic” view of collisionless processes governing the creation of non-thermal distributions of electrons and protons in cluster shocks (based on analytic theory and particle-in-cell simulations), with the “macroscopic” view of the large-scale distribution of cosmic rays, suggested by modern cosmological simulations. Time dependent non-linear kinetic models of particle acceleration by multiple internal shocks with large scale compressible motions of plasma with soft CR spectra containing a noticeable energy density in the super-thermal protons of energies below a few GeV which is difficult to constrain by Fermi observations are discussed. We consider the effect of plasma composition on CR injection and super-thermal particle population in the hot intracluster matter which can be constrained by fine high resolution X-ray spectroscopy of Fe ions.

Journal ArticleDOI
TL;DR: In this paper, the authors review the current knowledge of comet 67P/Churyumov-Gerasimenko nucleus composition as inferred from measurements made by remote sensing and in-situ instruments aboard Rosetta orbiter and Philae lander.
Abstract: We review our current knowledge of comet 67P/Churyumov–Gerasimenko nucleus composition as inferred from measurements made by remote sensing and in-situ instruments aboard Rosetta orbiter and Philae lander. Spectrophotometric properties (albedos, color indexes and Hapke parameters) of 67P/CG derived by Rosetta are discussed in the context of other comets previously explored by space missions. Composed of an assemblage made of ices, organic materials and minerals, cometary nuclei exhibit very dark and red surfaces which can be described by means of spectrophotometric quantities and reproduced with laboratory measurements. The presence of surface water and carbon dioxide ices was found by Rosetta to occur at localized sites where the activity driven by solar input, gaseous condensation or exposure of pristine inner layers can maintain these species on the surface. Apart from these specific areas, 67P/CG’s surface appears remarkably uniform in composition with a predominance of organic materials and minerals. The organic compounds contain abundant hydroxyl group and a refractory macromolecular material bearing aliphatic and aromatic hydrocarbons. The mineral components are compatible with a mixture of silicates and fine-grained opaques, including Fe-sulfides, like troilite and pyrrhotite, and ammoniated salts. In the vicinity of the perihelion several active phenomena, including the erosion of surface layers, the localized activity in cliffs, fractures and pits, the collapse of overhangs and walls, the transfer and redeposition of dust, cause the evolution of the different regions of the nucleus by inducing color, composition and texture changes.

Journal ArticleDOI
TL;DR: In this article, the authors describe significant evidence for the accretion of ices and hydrated minerals in the outer protoplanetary disk, which can be interpreted as evidence of wet accretion.
Abstract: Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies. In this review, we describe significant evidence for the accretion of ices and hydrated minerals in the outer protoplanetary disk. In that distant region highly porous and fragile carbon and water-rich transitional asteroids formed, being the parent bodies of the carbonaceous chondrites (CCs). CCs are undifferentiated meteorites that never melted but experienced other physical processes including thermal and aqueous alteration. Recent evidence indicates that few of them have escaped significant alteration, retaining unique features that can be interpreted as evidence of wet accretion. Some examples of carbonaceous chondrite parent body aqueous alteration will be presented. Finally, atomistic interpretations of the first steps leading to water-mediated alteration during the accretion of CCs are provided and discussed. From these new insights into the water retained in CCs we can decipher the pathways of delivery of volatiles to the terrestrial planets.

Journal ArticleDOI
TL;DR: The Modular X and Gamma-ray Sensor (MXGS) as mentioned in this paper is an imaging and spectral X- and gamma-ray instrument mounted on the starboard side of the Columbus module on the International Space Station.
Abstract: The Modular X- and Gamma-ray Sensor (MXGS) is an imaging and spectral X- and Gamma-ray instrument mounted on the starboard side of the Columbus module on the International Space Station. Together with the Modular Multi-Spectral Imaging Assembly (MMIA) (Chanrion et al. this issue) MXGS constitutes the instruments of the Atmosphere-Space Interactions Monitor (ASIM) (Neubert et al. this issue). The main objectives of MXGS are to image and measure the spectrum of X- and $\gamma $ -rays from lightning discharges, known as Terrestrial Gamma-ray Flashes (TGFs), and for MMIA to image and perform high speed photometry of Transient Luminous Events (TLEs) and lightning discharges. With these two instruments specifically designed to explore the relation between electrical discharges, TLEs and TGFs, ASIM is the first mission of its kind. With an imaging system and a large detector area MXGS will, for the first time, allow estimation of the location of the source region and characterization of the energy spectrum of individual events. The sensors have fast readout electronics to minimize pileup effects, giving high time resolution of photon detection for comparison with measurements on μs-time scales of lightning processes measured by the MMIA and other sensors in space or on the ground. The detectors cover the large energy range of the relevant photon energies. In this paper we describe the scientific objectives, design, performance, imaging capabilities and operational modes of the MXGS instrument.

Journal ArticleDOI
TL;DR: In this article, the surface morphology of comet 67P/Churyumov-Gerasimenko was reviewed as viewed by Rosetta from August 2014 to September 2016, their link to various processes, and the forces that drive surface evolution.
Abstract: Comets can be regarded as active planetary bodies because they display evidence for nearly all fundamental geological processes, which include impact cratering, tectonism, and erosion. Comets also display sublimation-driven outgassing, which is comparable to volcanism on larger planetary bodies in that it provides a conduit for delivering materials from the interior to the surface. However, in the domain of active geological bodies, comets occupy a special niche since their geologic activity is almost exclusively driven by externally supplied energy (i.e. solar energy) as opposed to an internal heat source, which makes them “seasonally-active” geological bodies. During their active phase approaching the Sun, comets also develop a transient atmosphere that interacts with the surface and contributes to its evolution, particularly by transporting materials across the surface. Variations in solar energy input on diurnal and seasonal scale cause buildup of thermal stresses within consolidated materials that lead to weathering through fracturing, and eventually mass-wasting. The commonly irregular shapes of comets also play a major role in their evolution by leading to (1) non-uniform gravitational forces that affect material movement across the surface, and (2) spatially heterogeneous outgassing patterns that affect the comet’s orbital dynamics and lead to tidal stresses that can further fracture the nucleus. In this chapter, we review the surface morphology of comet 67P/Churyumov–Gerasimenko as well as its seasonal evolution as viewed by Rosetta from August 2014 to September 2016, their link to various processes, and the forces that drive surface evolution.

Journal ArticleDOI
TL;DR: The Icy Giants Uranus and Neptune have similar rotation periods, large orbital inclinations and intense zonal winds at the visible cloud level as discussed by the authors, however, the intensity of the winds observed at the cloud level remains a mystery considering the small energy available at the distance of the planets to the Sun.
Abstract: The Icy Giants Uranus and Neptune have similar rotation periods, large orbital inclinations and intense zonal winds at the visible cloud level. The winds are organized into three broad jets: a zonal jet that flows to the West at low latitudes and single jets that flow to the East in each hemisphere at mid and high-latitudes. The intensity of the winds observed at the cloud level remains a mystery considering the small energy available at the distance of the planets to the Sun. Both planets have zonal bands with low contrast that do not correlate with the structure of the winds. They also have dark anticyclones and bright cloud systems but present striking differences in the abundance of these features and their size and latitudinal distribution. The bands and major meteorological systems are observed at altitudes compatible with methane clouds and observational evidence suggests the presence of a deeper cloud of hydrogen sulfide and a latitudinal variation of hydrogen sulfide and methane with depletion of methane at high latitudes and more detectable hydrogen sulfide near the poles. Other chemical species like ammonia hydrosulfide and water should condense forming deep clouds at pressures of tens to hundreds of bars. A small number of bright features in both planets are good candidates for moist convective storms possibly powered by methane condensation. The expected deep abundances of volatiles in these cold atmospheres are at least 10 times larger than those on Jupiter and Saturn making the global distribution of volatiles a key feature to determine the stability of the atmosphere, influencing also the vertical wind shear and inhibiting the development of large moist convective storms. The combination of deep massive clouds, weak solar and internal heat forcing, extremely long seasons and potential effects in favor and against moist convection place these planets in a dynamic regime unlike any other in Solar System planets. Here we explore the observed meteorology at cloud level and the deep “weather layers” of these planets. We show that a combination of orbital and in situ data will probably be required to answer satisfactorily outstanding questions in the behavior of these atmospheres.