scispace - formally typeset
Search or ask a question
JournalISSN: 1094-6470

Spe Reservoir Evaluation & Engineering 

Society of Petroleum Engineers
About: Spe Reservoir Evaluation & Engineering is an academic journal published by Society of Petroleum Engineers. The journal publishes majorly in the area(s): Relative permeability & Enhanced oil recovery. It has an ISSN identifier of 1094-6470. Over the lifetime, 1632 publications have been published receiving 50531 citations. The journal is also known as: SPE reservoir evaluation and engineering & SPEREE.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new theoretical model for calculating pore volume compressibility and permeability in coals as a function of effective stress and matrix shrinkage, using a single equation is presented.
Abstract: In naturally fractured formations, such as coal, permeability is sensitive to changes in stress or pore pressure (i.e., effective stress). This paper presents a new theoretical model for calculating pore volume compressibility and permeability in coals as a function of effective stress and matrix shrinkage, using a single equation. The equation is appropriate for uniaxial strain conditions, as expected in a reservoir. The model predicts how permeability changes as pressure is decreased (i.e., drawdown). Pore volume compressibility is derived in this theory from fundamental reservoir parameters. It is not constant, as often assumed. Pore volume compressibility is high in coals because porosity is so small. A rebound in permeability can occur at lower drawdown pressures for the highest modulus and matrix shrinkage values. We have also history matched rates from a {open_quotes}boomer{close_quotes} well in the fairway of the San Juan basin using various stress-dependent permeability functions. The best fit stress-permeability function is then compared with the new theory.

682 citations

Journal ArticleDOI
TL;DR: A review of the water-alternating-gas (WAG) field experience can be found in the literature today from the first reported WAG in 1957 in Canada and up to new experience from the North Sea as mentioned in this paper.
Abstract: In recent years there has been an increasing interest in water-alternating-gas (WAG) processes, both miscible and immiscible. WAG injection is an oil recovery method initially aimed to improve sweep efficiency during gas injection. In some recent applications produced hydrocarbon gas has been re-injected in water injection wells with the aim of improving oil recovery and pressure maintenance. Oil recovery by WAG has been attributed to contact of unswept zones, especially recovery of attic or cellar oil by exploiting the segregation of gas to the top or accumulating of water towards the bottom. Since the residual oil after gas flooding is normally lower than the residual oil after water flooding, and three-phase zones may obtain lower remaining oil saturation, water-alternating-gas has potential for increased microscopic displacement efficiency. WAG injection, thus, can lead to improved oil recovery by combining better mobility control and contacting unswept zones, and also leading to improved microscopical displacement. This study is a review of the WAG field experience as it is found in the literature today from the first reported WAG in 1957 in Canada and up to new experience from the North Sea. About 60 fields have been reviewed. Both onshore and offshore projects have been included, as well as WAG with hydrocarbon or non-hydrocarbon gases. Wellspacing is very different from onshore projects (where fine patterns often are applied) to offshore projects (well spacing in the order of 1000 meters). For the fields reviewed, a common trend for the successful injections is an increased oil recovery in the range of 5-10 per cent of the OIIP. Very few field trials have been reported unsuccessful, but operational problems are often comment Though, the injectivity and production problems are generall not detrimental for the WAG process, special attention been given to breakthrough of injected phases (water or gas Improved oil recovery by WAG is discussed as influenced b rock type, injection strategy, miscible/immiscible gas, an well spacing.

446 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202344
202259
202157
202094
2019107
201845