scispace - formally typeset
Search or ask a question
JournalISSN: 0039-2103

Strain 

Wiley-Blackwell
About: Strain is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Strain gauge & Digital image correlation. It has an ISSN identifier of 0039-2103. Over the lifetime, 1479 publications have been published receiving 21860 citations.


Papers
More filters
Journal ArticleDOI
01 May 2006-Strain
TL;DR: A general presentation of the extraction of displacement fields from the knowledge of pictures taken at different instants of an experiment is given, and different strategies can be followed to achieve a sub-pixel uncertainty.
Abstract: The current development of digital image correlation, whose displacement uncertainty is well below the pixel value, enables one to better characterise the behaviour of materials and the response of structures to external loads. A general presentation of the extraction of displacement fields from the knowledge of pictures taken at different instants of an experiment is given. Different strategies can be followed to achieve a sub-pixel uncertainty. From these measurements, new identification procedures are devised making use of full-field measures. A priori or a posteriori routes can be followed. They are illustrated on the analysis of a Brazilian test.

764 citations

Journal ArticleDOI
01 May 2004-Strain
TL;DR: In this article, a model of the PZT power harvesting device was developed to simplify the design procedure necessary for determining the appropriate size and vibration levels necessary for sufficient energy to be produced and supplied to the electronic devices.
Abstract: Piezoelectric materials (PZT) can be used as mechanisms to transfer mechanical energy, usually ambient vibration, into electrical energy that can be stored and used to power other devices. With the recent advances in wireless and micro-electro-mechanical-systems (MEMS) technology, sensors can be placed in exotic and remote locations. As these devices are wireless it becomes necessary that they have their own power supply. The power supply in most cases is the conventional battery; however, problems can occur when using batteries because of their finite life span. Because most sensors are being developed so that they can be placed in remote locations such as structural sensors on a bridge or global positioning service (GPS) tracking devices on animals in the wild, obtaining the sensor simply to replace the battery can become a very expensive task. Fur- thermore, in the case of sensors located on civil structures, it is often advantageous to embed them, making access impossible. Therefore, if a method of obtaining the untapped energy surrounding these sensors was implemented, significant life could be added to the power supply. One method is to use PZT materials to obtain ambient energy surrounding the test specimen. This captured energy could then be used to prolong the power supply or in the ideal case provide endless energy for the sensors lifespan. The goal of this study is to develop a model of the PZT power harvesting device. This model would simplify the design procedure necessary for determining the appropriate size and vibration levels necessary for sufficient energy to be produced and supplied to the electronic devices. An experimental verification of the model is also performed to ensure its accuracy.

759 citations

Journal ArticleDOI
01 Aug 2006-Strain
TL;DR: In this paper, the authors used a computational/experimental scheme, for the study of the nonlinear mechanical behaviour of biological soft tissues under uniaxial tension, and obtained the material constants for seven different hyperelastic material models via inverse methods.
Abstract: The correct modelling of constitutive laws is of critical importance for the analysis of mechanical behaviour of solids and structures. For example, the understanding of soft tissue mechanics, because of the nonlinear behaviour commonly displayed by the mechanical properties of such mate- rials, makes common place the use of hyperelastic constitutive models. Hyperelastic models however, depend on sets of variables that must be obtained experimentally. In this study the authors use a computational/experimental scheme, for the study of the nonlinear mechanical behaviour of biological soft tissues under uniaxial tension. The material constants for seven different hyperelastic material models are obtained via inverse methods. The use of Martins's model to fit experimental data is presented in this paper for the first time. The search for an optimal value for each set of material parameters is performed by a Levenberg-Marquardt algorithm. As a control measure, the process is fully applied to silicone-rubber samples subjected to uniaxial tension tests. The fitting accuracy of the experimental stress-strain relation to the theoretical one, for both soft tissues and silicone-rubber (typically nonlinear) is evaluated. This study intents also to select which material models (or model types), the authors will employ in future works, for the analysis of human soft biological tissues.

424 citations

Journal ArticleDOI
01 Aug 2007-Strain
TL;DR: In this article, a set of triaxial compression tests on specimens of argillaceous rock were performed under tomographic monitoring at the European Synchrotron Radiation Facility in Grenoble, France, using an original experimental set-up developed at Laboratoire 3S.
Abstract: A set of triaxial compression tests on specimens of argillaceous rock were performed under tomographic monitoring at the European Synchrotron Radiation Facility in Grenoble, France, using an original experimental set-up developed at Laboratoire 3S, Grenoble Complete 3D images of the specimens were recorded throughout each test using X-ray microtomography Such images were subsequently analysed using a Volumetric Digital Image Correlation software developed at the Laboratoire de Me?canique des Solides in Palaiseau, France Full-field incremental strain measurements were obtained, which allow to detect the onset of shear strain localisation and to characterise its development in a 3D complex pattern Volumetric Digital Image Correlation revealed patterns which could not be directly observed from the original tomographic images, because the deformation process in the zones of localised deformation was essentially isochoric (ie without volumetric strain), hence not associated to density changes

352 citations

Journal ArticleDOI
01 Apr 2009-Strain
TL;DR: In this article, the expectation and variance in image motions in the presence of uncorrelated Gaussian intensity noise for each pixel location are obtained by optimising a least squares intensity matching metric.
Abstract: Basic concepts in probability are employed to develop analytic formulae for both the expectation (bias) and variance for image motions obtained during subset-based pattern matching. Specifically, the expectation and variance in image motions in the presence of uncorrelated Gaussian intensity noise for each pixel location are obtained by optimising a least squares intensity matching metric. Results for both 1D and 2D image analyses clearly quantify both the bias and the covariance matrix for image motion estimates as a function of: (a) interpolation method, (b) sub-pixel motion, (c) intensity noise, (d) contrast, (e) level of uniaxial normal strain and (f) subset size. For 1D translations, excellent agreement is demonstrated between simulations, theoretical predictions and experimental measurements. The level of agreement confirms that the analytical formulae can be used to provide a priori estimates for the ‘quality’ of local, subset-based measurements achievable with a given pattern. For 1D strain with linear interpolation, theoretical predictions are provided for the expectation and co-variance matrix for the local displacement and strain parameters. For 2D translations with bi-linear interpolation, theoretical predictions are provided for both the expectation and the co-variance matrix for both displacement components. Theoretical results in both cases show that the expectations for the local parameters are biased and a function of: (a) the interpolation difference between the translated and reference images, (b) magnitude of white noise, (c) decimal part of the motion and (d) intensity pattern gradients. For 1D strain, the biases and the covariance matrix for both parameters are directly affected by the strain parameter p1 as the deformed image is stretched by (1 + p1). For 2D rigid body motion case, the covariance matrix for measured motions is shown to have coupling between the motions, demonstrating that the directions of maximum and minimum variability do not generally coincide with the x and y directions.

264 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202323
202226
202127
202032
201931
201836