scispace - formally typeset
Search or ask a question
JournalISSN: 1935-3812

Swarm Intelligence 

Springer Science+Business Media
About: Swarm Intelligence is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Swarm behaviour & Swarm robotics. It has an ISSN identifier of 1935-3812. Over the lifetime, 229 publications have been published receiving 29728 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A snapshot of particle swarming from the authors’ perspective, including variations in the algorithm, current and ongoing research, applications and open problems, is included.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed The relationships between particle swarm optimization and both artificial life and genetic algorithms are described

18,439 citations

Journal ArticleDOI
TL;DR: This paper analyzes the literature from the point of view of swarm engineering and proposes two taxonomies: in the first taxonomy, works that deal with design and analysis methods are classified; in the second, works according to the collective behavior studied are classified.
Abstract: Swarm robotics is an approach to collective robotics that takes inspiration from the self-organized behaviors of social animals. Through simple rules and local interactions, swarm robotics aims at designing robust, scalable, and flexible collective behaviors for the coordination of large numbers of robots. In this paper, we analyze the literature from the point of view of swarm engineering: we focus mainly on ideas and concepts that contribute to the advancement of swarm robotics as an engineering field and that could be relevant to tackle real-world applications. Swarm engineering is an emerging discipline that aims at defining systematic and well founded procedures for modeling, designing, realizing, verifying, validating, operating, and maintaining a swarm robotics system. We propose two taxonomies: in the first taxonomy, we classify works that deal with design and analysis methods; in the second taxonomy, we classify works according to the collective behavior studied. We conclude with a discussion of the current limits of swarm robotics as an engineering discipline and with suggestions for future research directions.

1,405 citations

Journal ArticleDOI
TL;DR: The underlying mechanisms of complex collective behaviors of social insects, from the concept of stigmergy to the theory of self-organization in biological systems, are described and four functions that emerge at the level of the colony and that organize its global behavior are proposed.
Abstract: The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. From the routing of traffic in telecommunication networks to the design of control algorithms for groups of autonomous robots, the collective behaviors of these animals have inspired many of the foundational works in this emerging research field. For the first issue of this journal dedicated to swarm intelligence, we review the main biological principles that underlie the organization of insects’ colonies. We begin with some reminders about the decentralized nature of such systems and we describe the underlying mechanisms of complex collective behaviors of social insects, from the concept of stigmergy to the theory of self-organization in biological systems. We emphasize in particular the role of interactions and the importance of bifurcations that appear in the collective output of the colony when some of the system’s parameters change. We then propose to categorize the collective behaviors displayed by insect colonies according to four functions that emerge at the level of the colony and that organize its global behavior. Finally, we address the role of modulations of individual behaviors by disturbances (either environmental or internal to the colony) in the overall flexibility of insect colonies. We conclude that future studies about self-organized biological behaviors should investigate such modulations to better understand how insect colonies adapt to uncertain worlds.

502 citations

Journal ArticleDOI
TL;DR: It is shown how ARGoS can be extended to suit the needs of an experiment in which custom functionality is necessary to achieve sufficient simulation accuracy, and the efficiency and flexibility of the multi-robot simulator are assessed.
Abstract: We present a novel multi-robot simulator named ARGoS. ARGoS is designed to simulate complex experiments involving large swarms of robots of different types. ARGoS is the first multi-robot simulator that is at the same time both efficient (fast performance with many robots) and flexible (highly customizable for specific experiments). Novel design choices in ARGoS have enabled this breakthrough. First, in ARGoS, it is possible to partition the simulated space into multiple sub-spaces, managed by different physics engines running in parallel. Second, ARGoS’ architecture is multi-threaded, thus designed to optimize the usage of modern multi-core CPUs. Finally, the architecture of ARGoS is highly modular, enabling easy addition of custom features and appropriate allocation of computational resources. We assess the efficiency of ARGoS and showcase its flexibility with targeted experiments. Experimental results demonstrate that simulation run-time increases linearly with the number of robots. A 2D-dynamics simulation of 10,000 e-puck robots can be performed in 60 % of the time taken by the corresponding real-world experiment. We show how ARGoS can be extended to suit the needs of an experiment in which custom functionality is necessary to achieve sufficient simulation accuracy. ARGoS is open source software licensed under GPL3 and is downloadable free of charge.

486 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a series of standard multimodal test functions and more complex ones, such as stair-case and multiple-plateau functions.
Abstract: This paper presents glowworm swarm optimization (GSO), a novel algorithm for the simultaneous computation of multiple optima of multimodal functions. The algorithm shares a few features with some better known swarm intelligence based optimization algorithms, such as ant colony optimization and particle swarm optimization, but with several significant differences. The agents in GSO are thought of as glowworms that carry a luminescence quantity called luciferin along with them. The glowworms encode the fitness of their current locations, evaluated using the objective function, into a luciferin value that they broadcast to their neighbors. The glowworm identifies its neighbors and computes its movements by exploiting an adaptive neighborhood, which is bounded above by its sensor range. Each glowworm selects, using a probabilistic mechanism, a neighbor that has a luciferin value higher than its own and moves toward it. These movements—based only on local information and selective neighbor interactions—enable the swarm of glowworms to partition into disjoint subgroups that converge on multiple optima of a given multimodal function. We provide some theoretical results related to the luciferin update mechanism in order to prove the bounded nature and convergence of luciferin levels of the glowworms. Experimental results demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a series of standard multimodal test functions and more complex ones, such as stair-case and multiple-plateau functions. We also report the results of tests in higher dimensional spaces with a large number of peaks. We address the parameter selection problem by conducting experiments to show that only two parameters need to be selected by the user. Finally, we provide some comparisons of GSO with PSO and an experimental comparison with Niche-PSO, a PSO variant that is designed for the simultaneous computation of multiple optima.

413 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202317
202214
202121
202012
201913
201816