scispace - formally typeset
Search or ask a question
JournalISSN: 1063-5157

Systematic Biology 

Oxford University Press
About: Systematic Biology is an academic journal published by Oxford University Press. The journal publishes majorly in the area(s): Phylogenetic tree & Phylogenetics. It has an ISSN identifier of 1063-5157. Over the lifetime, 3983 publications have been published receiving 463019 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly, and provides more output options than previously, including samples of ancestral states, site rates, site dN/dS rations, branch rates, and node dates.
Abstract: Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

18,718 citations

Journal ArticleDOI
TL;DR: This work has used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches.
Abstract: The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximum- likelihood principle, which clearly satisfies these requirements. The core of this method is a simple hill-climbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches. The reduction of computing time is dramatic in comparison with other maximum-likelihood packages, while the likelihood maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as some popular distance-based and parsimony algorithms. This new method is implemented in the PHYML program, which is freely available on our web page: http://www.lirmm.fr/w3ifa/MAAS/. (Algorithm; computer simulations; maximum likelihood; phylogeny; rbcL; RDPII project.) The size of homologous sequence data sets has in- creased dramatically in recent years, and many of these data sets now involve several hundreds of taxa. More- over, current probabilistic sequence evolution models (Swofford et al., 1996 ; Page and Holmes, 1998 ), notably those including rate variation among sites (Uzzell and Corbin, 1971 ; Jin and Nei, 1990 ; Yang, 1996 ), require an increasing number of calculations. Therefore, the speed of phylogeny reconstruction methods is becoming a sig- nificant requirement and good compromises between speed and accuracy must be found. The maximum likelihood (ML) approach is especially accurate for building molecular phylogenies. Felsenstein (1981) brought this framework to nucleotide-based phy- logenetic inference, and it was later also applied to amino acid sequences (Kishino et al., 1990). Several vari- ants were proposed, most notably the Bayesian meth- ods (Rannala and Yang 1996; and see below), and the discrete Fourier analysis of Hendy et al. (1994), for ex- ample. Numerous computer studies (Huelsenbeck and Hillis, 1993; Kuhner and Felsenstein, 1994; Huelsenbeck, 1995; Rosenberg and Kumar, 2001; Ranwez and Gascuel, 2002) have shown that ML programs can recover the cor- rect tree from simulated data sets more frequently than other methods can. Another important advantage of the ML approach is the ability to compare different trees and evolutionary models within a statistical framework (see Whelan et al., 2001, for a review). However, like all optimality criterion-based phylogenetic reconstruction approaches, ML is hampered by computational difficul- ties, making it impossible to obtain the optimal tree with certainty from even moderate data sets (Swofford et al., 1996). Therefore, all practical methods rely on heuristics that obtain near-optimal trees in reasonable computing time. Moreover, the computation problem is especially difficult with ML, because the tree likelihood not only depends on the tree topology but also on numerical pa- rameters, including branch lengths. Even computing the optimal values of these parameters on a single tree is not an easy task, particularly because of possible local optima (Chor et al., 2000). The usual heuristic method, implemented in the pop- ular PHYLIP (Felsenstein, 1993 ) and PAUP ∗ (Swofford, 1999 ) packages, is based on hill climbing. It combines stepwise insertion of taxa in a growing tree and topolog- ical rearrangement. For each possible insertion position and rearrangement, the branch lengths of the resulting tree are optimized and the tree likelihood is computed. When the rearrangement improves the current tree or when the position insertion is the best among all pos- sible positions, the corresponding tree becomes the new current tree. Simple rearrangements are used during tree growing, namely "nearest neighbor interchanges" (see below), while more intense rearrangements can be used once all taxa have been inserted. The procedure stops when no rearrangement improves the current best tree. Despite significant decreases in computing times, no- tably in fastDNAml (Olsen et al., 1994 ), this heuristic becomes impracticable with several hundreds of taxa. This is mainly due to the two-level strategy, which sepa- rates branch lengths and tree topology optimization. In- deed, most calculations are done to optimize the branch lengths and evaluate the likelihood of trees that are finally rejected. New methods have thus been proposed. Strimmer and von Haeseler (1996) and others have assembled four- taxon (quartet) trees inferred by ML, in order to recon- struct a complete tree. However, the results of this ap- proach have not been very satisfactory to date (Ranwez and Gascuel, 2001 ). Ota and Li (2000, 2001) described

16,261 citations

Journal ArticleDOI
TL;DR: A new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves and a new test to assess the support of the data for internal branches of a phylogeny are introduced.
Abstract: PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.

14,385 citations

Journal ArticleDOI
TL;DR: A method is presented that is asserted to provide all hypothetical ancestral character states that are consistent with describing the descent of the present-day character states in a minimum number of changes of state using a predetermined phylogenetic relationship among the taxa represented.
Abstract: Fitch, W. M. (Dept. of Physiological Chemistry, Univ. of Wisconsin, Madison, Wisconsin, 53706), 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool., 20:406-416.-A method is presented that is asserted to provide all hypothetical ancestral character states that are consistent with describing the descent of the present-day character states in a minimum number of changes of state using a predetermined phylogenetic relationship among the taxa represented. The character states used as examples are the four messenger RNA nucleotides encoding the amino acid sequences of proteins, but the method is general. [Evolution; parsimonious trees.] It has been a goal of those attempting to deduce phylogenetic relationships from information on biological characteristics to find the ancestral relationship(s) that would permit one to account for the descent of those characteristics in a manner requiring a minimum number of evolutionary steps or changes. The result could be called the most parsimonious evolutionary tree and might be expected to have a high degree of correspondence to the true phylogeny (Camin and Sokal, 1965). It's justification lies in the most efficient use of the information available and does not presuppose that evolution follows a most parsimonious course. There are no known algorithms for finding the most parsimonious tree(s) apart from the brute force method of examining nearly every possible tree.' This is impractical for trees involving a dozen or more taxonomic units. Most numerical taxonomic procedures (Sokal and Sneath, 1963; Farris, 1969, 1970; Fitch and Margoliash, 1967) provide dendrograms that would be among the more parsimonious solutions; one just cannot be sure that a more parsimonious tree structure does not exist. Farris (1970) has explicitly considered the parsimony principle as a part of 'An elegant beginning to an attack on the problem has recently been published by Farris (1969) who developed a method which estimates the reliability of various characters and then weights the characters on the basis of that reliability. his method which, like the present method, has its roots in the Wagner tree (Wagner,

7,028 citations

Journal ArticleDOI
TL;DR: This work developed, implemented, and thoroughly tested rapid bootstrap heuristics in RAxML (Randomized Axelerated Maximum Likelihood) that are more than an order of magnitude faster than current algorithms and can contribute to resolving the computational bottleneck and improve current methodology in phylogenetic analyses.
Abstract: Despite recent advances achieved by application of high-performance computing methods and novel algorithmic techniques to maximum likelihood (ML)-based inference programs, the major computational bottleneck still consists in the computation of bootstrap support values. Conducting a probably insufficient number of 100 bootstrap (BS) analyses with current ML programs on large datasets—either with respect to the number of taxa or base pairs—can easily require a month of run time. Therefore, we have developed, implemented, and thoroughly tested rapid bootstrap heuristics in RAxML (Randomized Axelerated Maximum Likelihood) that are more than an order of magnitude faster than current algorithms. These new heuristics can contribute to resolving the computational bottleneck and improve current methodology in phylogenetic analyses. Computational experiments to assess the performance and relative accuracy of these heuristics were conducted on 22 diverse DNA and AA (amino acid), single gene as well as multigene, real-world alignments containing 125 up to 7764 sequences. The standard BS (SBS) and rapid BS (RBS) values drawn on the best-scoring ML tree are highly correlated and show almost identical average support values. The weighted RF (Robinson-Foulds) distance between SBS- and RBS-based consensus trees was smaller than 6% in all cases (average 4%). More importantly, RBS inferences are between 8 and 20 times faster (average 14.73) than SBS analyses with RAxML and between 18 and 495 times faster than BS analyses with competing programs, such as PHYML or GARLI. Moreover, this performance improvement increases with alignment size. Finally, we have set up two freely accessible Web servers for this significantly improved version of RAxML that provide access to the 200-CPU cluster of the Vital-IT unit at the Swiss Institute of Bioinformatics and the 128-CPU cluster of the CIPRES project at the San Diego Supercomputer Center. These Web servers offer the possibility to conduct large-scale phylogenetic inferences to a large part of the community that does not have access to, or the expertise to use, high-performance computing resources. (Maximum likelihood; phylogenetic inference; rapid bootstrap; RAxML; support values.)

6,585 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202341
202296
2021138
202075
201971
201886