scispace - formally typeset
Search or ask a question

Showing papers in "The Astrophysical Journal in 2012"


Journal ArticleDOI
TL;DR: In this article, Advanced Camera for Surveys, NICMOS and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey was presented.
Abstract: We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

1,784 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented improved synthesis models of the evolving spectrum of the UV/X-ray diffuse background, updating and extending their previous results, and provided tables of predicted H I and He II photoionization and photoheating rates for use, e.g., in cosmological hydrodynamics simulations of the Lyα forest and a new metallicity-dependent calibration to the UV luminosity density-star formation rate density relation.
Abstract: We present improved synthesis models of the evolving spectrum of the UV/X-ray diffuse background, updating and extending our previous results. Five new main components are added to our radiative transfer code CUBA: (1) the sawtooth modulation of the background intensity from resonant line absorption in the Lyman series of cosmic hydrogen and helium; (2) the X-ray emission from the obscured and unobscured quasars that gives origin to the X-ray background; (3) a piecewise parameterization of the distribution in redshift and column density of intergalactic absorbers that fits recent measurements of the mean free path of 1 ryd photons; (4) an accurate treatment of the photoionization structure of absorbers, which enters in the calculation of the helium continuum opacity and recombination emissivity; and (5) the UV emission from star-forming galaxies at all redshifts. We provide tables of the predicted H I and He II photoionization and photoheating rates for use, e.g., in cosmological hydrodynamics simulations of the Lyα forest and a new metallicity-dependent calibration to the UV luminosity density-star formation rate density relation. A "minimal cosmic reionization model" is also presented in which the galaxy UV emissivity traces recent determinations of the cosmic history of star formation, the luminosity-weighted escape fraction of hydrogen-ionizing radiation increases rapidly with look-back time, the clumping factor of the high-redshift intergalactic medium evolves following the results of hydrodynamic simulations, and Population III stars and miniquasars make a negligible contribution to the metagalactic flux. The model provides a good fit to the hydrogen-ionization rates inferred from flux decrement and proximity effect measurements, predicts that cosmological H II (He III) regions overlap at redshift 6.7 (2.8), and yields an optical depth to Thomson scattering, τes = 0.084 that is in agreement with Wilkinson Microwave Anisotropy Probe results. Our new background intensities and spectra are sensitive to a number of poorly determined input parameters and suffer from various degeneracies. Their predictive power should be constantly tested against new observations. We are therefore making our redshift-dependent UV/X emissivities and CUBA outputs freely available for public use at http://www.ucolick.org/~pmadau/CUBA.

1,010 citations


Journal ArticleDOI
TL;DR: In this paper, the Pan-STARRS1 photometric system was determined based on the Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres.
Abstract: The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination –30° to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper, we present our determination of the Pan-STARRS1 photometric system: g P1, r P1, i P1, z P1, y P1, and w P1. The Pan-STARRS1 photometric system is fundamentally based on the Hubble Space Telescope Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS1 magnitude system and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. By-products, including transformations to other photometric systems, Galactic extinction, and stellar locus, are also provided. We close with a discussion of remaining systematic errors.

983 citations


Journal ArticleDOI
TL;DR: In this paper, a suite of state-of-the-art high-resolution N-body simulations is used to predict the nonlinear matter power spectrum in a universe dominated by cold dark matter.
Abstract: Based on a suite of state-of-the-art high-resolution N-body simulations, we revisit the so-called halofit model as an accurate fitting formula for the nonlinear matter power spectrum. While the halofit model has frequently been used as a standard cosmological tool to predict the nonlinear matter power spectrum in a universe dominated by cold dark matter, its precision has been limited by the low resolution of N-body simulations used to determine the fitting parameters, suggesting the necessity of an improved fitting formula at small scales for future cosmological studies. We run high-resolution N-body simulations for 16 cosmological models around the Wilkinson Microwave Anisotropy Probe best-fit cosmological parameters (one-, three-, five-, and seven-year results), including dark energy models with a constant equation of state. The simulation results are used to re-calibrate the fitting parameters of the halofit model so as to reproduce small-scale power spectra of the N-body simulations, while keeping the precision at large scales. The revised fitting formula provides an accurate prediction of the nonlinear matter power spectrum in a wide range of wavenumbers (k ? 30 h?Mpc?1) at redshifts 0 ? z ? 10, with 5% precision for k ? 1 h?Mpc?1 at 0 ? z ? 10 and 10% for 1 ? k ? 10 h?Mpc?1 at 0 ? z ? 3. We discuss the impact of the improved halofit model on weak-lensing power spectra and correlation functions, and show that the improved model better reproduces ray-tracing simulation results.

921 citations


Journal ArticleDOI
TL;DR: In this article, the star formation rate (SFR)-stellar mass (M{sub *}) relation in a self-consistent manner from 0 10 at 1 < z < 1.
Abstract: We study the star formation rate (SFR)-stellar mass (M{sub *}) relation in a self-consistent manner from 0 10 at 1 < z < 1.5), (2) red star-forming galaxies with low levels of dust obscuration and low-specific SFRs (11%), and (3) dusty, blue star-forming galaxies with high-specific SFRs (7%). The remaining 28% comprises quiescent galaxies. Galaxies on the 'normal' star formation sequence show strong trends of increasing dust attenuationmore » with stellar mass and a decreasing specific SFR, with an observed scatter of 0.25 dex. The dusty, blue galaxies reside in the upper envelope of the star formation sequence with remarkably similar spectral shapes at all masses, suggesting that the same physical process is dominating the stellar light. The red, low-dust star-forming galaxies may be in the process of shutting off and migrating to the quiescent population.« less

921 citations


Journal ArticleDOI
TL;DR: In this article, a simple mid-infrared color criterion, W1 − W2 ≥ 0.8, was proposed to identify active galactic nucleus (AGN) candidates in the COSMOS field.
Abstract: The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 – W2 ≥ 0.8 (i.e., [3.4]–[4.6] ≥0.8, Vega), which identifies 61.9 ± 5.4 active galactic nucleus (AGN) candidates per deg^2 to a depth of W2 ~ 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 μJy at 4.6 μm, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.

773 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the large samples of luminous active galactic nuclei and high-redshift star-forming galaxies in COSMOS to redefine the AGN selection criteria for use in deep IRAC surveys.
Abstract: Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L_(2-10keV)(erg s^(–1)) ≥44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N H (cm^(–2)) = 23.5 ± 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.

694 citations


Journal ArticleDOI
Markus Ackermann, Marco Ajello1, W. B. Atwood2, Luca Baldini3  +176 moreInstitutions (36)
TL;DR: In this paper, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmicray confinement volume (halo), and distribution of interstellar gas.
Abstract: The gamma-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi-LAT mission and compare with models of the diffuse gamma-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the Xco-factor, the ratio between integrated CO-line intensity and molecular hydrogen column density, the fluxes and spectra of the gamma-ray point sources from the first Fermi-LAT catalogue, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as gamma rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but under-predict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point source populations and spectral variations of cosmic rays throughout the Galaxy.

686 citations


Journal ArticleDOI
TL;DR: In this article, Boyajian et al. presented interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array.
Abstract: We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for ~K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B – V), (V – R), (V – I), (V – J), (V – H), and (V – K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = –0.5 to +0.1 dex and are accurate to ~2%, ~5%, and ~4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by ~3%, and underestimate the radii of stars with radii <0.7 R_☉ by ~5%. These conclusions additionally suggest that the models over account for the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for the single star population to those of eclipsing binaries, we find that for a given mass, single and binary star radii are indistinguishable. However, we also find that for a given radius, the literature temperatures for binary stars are systematically lower compared to our interferometrically derived temperatures of single stars by ~200 to 300 K. The nature of this offset is dependent on the validation of binary star temperatures, where bringing all measurements to a uniform and correctly calibrated temperature scale is needed to identify any influence stellar activity may have on the physical properties of a star. Lastly, we present an empirically determined H-R diagram using fundamental properties presented here in combination with those in Boyajian et al. for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system.

681 citations


Journal ArticleDOI
TL;DR: In this article, the authors compute the Galactic merger rates for NS-NS, BH-BH, and BH -BH mergers with the StarTrack code and show that the binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time.
Abstract: The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{sup )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previousmore » work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.« less

678 citations


Journal ArticleDOI
TL;DR: In this paper, a new method to achieve point-spread function (PSF) subtractions for high-contrast imaging using principal component analysis that is applicable to both point sources or extended objects (disks) is described.
Abstract: We describe a new method to achieve point-spread function (PSF) subtractions for high-contrast imaging using principal component analysis that is applicable to both point sources or extended objects (disks). Assuming a library of reference PSFs, a Karhunen–Lo` eve transform of these references is used to create an orthogonal basis of eigenimages on which the science target is projected. For detection this approach provides comparable suppression to the Locally Optimized Combination of Images (LOCI) algorithm, albeit with increased robustness to the algorithm parameters and speed enhancement. For characterization of detected sources, the method enables forward modeling of astrophysical sources. This alleviates the biases in the astrometry and photometry of discovered faint sources, which are usually associated with LOCI-based PSF subtractions schemes. We illustrate the algorithm performance using archival Hubble Space Telescope images, but the approach may also be considered for ground-based data acquired with angular differential imaging or integral-field spectrographs.

Journal ArticleDOI
TL;DR: In this article, the Rossiter-McLaughlin effect was used to show that the obliquities of stars with close-in giant planets were initially nearly random, and that the low-obliquity that are often observed are a consequence of star-planet tidal interactions.
Abstract: We provide evidence that the obliquities of stars with close-in giant planets were initially nearly random, and that the low obliquities that are often observed are a consequence of star-planet tidal interactions. The evidence is based on 14 new measurements of the Rossiter-McLaughlin effect (for the systems HAT-P-6, HAT-P-7, HAT-P-16, HAT-P-24, HAT-P-32, HAT-P-34, WASP-12, WASP-16, WASP-18, WASP-19, WASP-26, WASP-31, Gl 436, and Kepler-8), as well as a critical review of previous observations. The low-obliquity (well-aligned) systems are those for which the expected tidal timescale is short, and likewise the high-obliquity (misaligned and retrograde) systems are those for which the expected timescale is long. At face value, this finding indicates that the origin of hot Jupiters involves dynamical interactions like planet-planet interactions or the Kozai effect that tilt their orbits rather than inspiraling due to interaction with a protoplanetary disk. We discuss the status of this hypothesis and the observations that are needed for a more definitive conclusion.

Journal ArticleDOI
TL;DR: In this paper, the authors derived the mass distributions of stellar compact remnants and provided analytic prescriptions for both single-star models (as a function of initial star mass) and binary-star model-prescriptions for compact object masses for major population synthesis codes.
Abstract: The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. A number of supernova engines have been proposed: neutrino- or oscillation-driven explosions enhanced by early (developing in 10-50 ms) and late-time (developing in 200 ms) convection as well as magnetic field engines (in black hole accretion disks or neutron stars). Using our current understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytic prescriptions for both single-star models (as a function of initial star mass) and for binary-star models-prescriptions for compact object masses for major population synthesis codes. These prescriptions have implications for a range of observations: X-ray binary populations, supernova explosion energies, and gravitational wave sources. We show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.

Journal ArticleDOI
TL;DR: In this paper, the role of turbulence and magnetic fields in star formation in molecular clouds is studied, and it is shown that the SFR depends on four basic parameters: (1) virial parameter αvir; (2) sonic Mach number ; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma with the Alfven Mach number.
Abstract: The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)—the Krumholz & McKee (KM), Padoan & Nordlund (PN), and Hennebelle & Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC—all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter αvir; (2) sonic Mach number ; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma with the Alfven Mach number . We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 × 106 M ☉ and Mach numbers -50 and -∞, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between and 50 for compressive turbulent forcing and αvir ~ 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvenic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.

Journal ArticleDOI
TL;DR: In this article, the authors show that the variations of specific star formation rates (sSFRs = SFR/M*) are driven by varying gas fractions and that the hardness of the radiation field, which is proportional to the dust-mass-weighted luminosity (L IR/M dust) and the primary parameter defining the shape of the IR spectral energy distribution, is equivalent to SFE/Z.
Abstract: Using data from the mid-infrared to millimeter wavelengths for individual galaxies and for stacked ensembles at 0.5 1012 L ☉). For galaxies within the MS, we show that the variations of specific star formation rates (sSFRs = SFR/M *) are driven by varying gas fractions. For relatively massive galaxies like those in our samples, we show that the hardness of the radiation field, U, which is proportional to the dust-mass-weighted luminosity (L IR/M dust) and the primary parameter defining the shape of the IR spectral energy distribution (SED), is equivalent to SFE/Z. For MS galaxies with stellar mass log (M */M ☉) ≥ 9.7 we measure this quantity, U, showing that it does not depend significantly on either the stellar mass or the sSFR. This is explained as a simple consequence of the existing correlations between SFR-M *, M *-Z, and M gas-SFR. Instead, we show that U (or equally L IR/M dust) does evolve, with MS galaxies having harder radiation fields and thus warmer temperatures as redshift increases from z = 0 to 2, a trend that can also be understood based on the redshift evolution of the M *-Z and SFR-M * relations. These results motivate the construction of a universal set of SED templates for MS galaxies that are independent of their sSFR or M * but vary as a function of redshift with only one parameter, U.

Journal ArticleDOI
TL;DR: In this paper, the authors performed a joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities using a self-consistent theoretical framework.
Abstract: Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as M-h proportional to M-*(0.46) and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M-* \textgreater 5 x 10(10)M(circle dot) and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, Mh/M*, varies from low to high masses, reaching a minimum of Mh/M-* similar to 27 at M-* = 4.5 x 10(10) M-circle dot and M-h = 1.2 x 10(12) M-circle dot. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been themost efficient. We describe the SHMR at this minimum in terms of the “ pivot stellarmass,” M-*(piv) the “pivot halo mass,” M-h(piv), and the “pivot ratio,” (M-h/M-*)(piv). Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M-h(piv) and M-*(piv) The pivot stellar mass decreases from M-*(piv) = 5.75 +/- 0.13x10(10) M-circle dot at z = 0.88 to M-*(piv) = 3.55 +/- 0.17x10(10) M-circle dot at z = 0.37. Intriguingly, however, the corresponding evolution of M-h(piv) leaves the pivot ratio constant with redshift at (M-h/M-*)(piv) similar to 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on M-h/M-* and not simply onMh, as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and active galactic nucleus feedback.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate and compare several possible counterparts, including short-duration gamma-ray bursts (SGRBs), "orphan" optical and radio afterglows, and day-long optical transients powered by the radioactive decay of heavy nuclei synthesized in the merger ejecta ("kilonovae") and conclude that SGRBs are the most useful to confirm the cosmic origin of a few GW events.
Abstract: The final inspiral of double neutron star and neutron-star-black-hole binaries are likely to be detected by advanced networks of ground-based gravitational wave (GW) interferometers. Maximizing the science returns from such a discovery will require the identification of an electromagnetic counterpart. Here we critically evaluate and compare several possible counterparts, including short-duration gamma-ray bursts (SGRBs), "orphan" optical and radio afterglows, and day-long optical transients powered by the radioactive decay of heavy nuclei synthesized in the merger ejecta ("kilonovae"). We assess the promise of each counterpart in terms of four "Cardinal Virtues": detectability, high fraction, identifiability, and positional accuracy. Taking into account the search strategy for typical error regions of tens of square degrees, we conclude that SGRBs are the most useful to confirm the cosmic origin of a few GW events, and to test the association with neutron star mergers. However, for the more ambitious goal of localizing and obtaining redshifts for a large sample of GW events, kilonovae are instead preferred. Off-axis optical afterglows are detectable for at most tens of percent of events, while radio afterglows are promising only for energetic relativistic ejecta in a high-density medium. Our main recommendations are: (1) an all-sky gamma-ray satellite is essential for temporal coincidence detections, and for GW searches of gamma-ray-triggered events; (2) the Large Synoptic Survey Telescope should adopt a one-day cadence follow-up strategy, ideally with 0.5 hr per pointing to cover GW error regions; and (3) radio searches should focus on the relativistic case, which requires observations for a few months.

Journal ArticleDOI
TL;DR: In this article, the authors used the same passbands to select the sources and measure the UV color of star-forming galaxies over a wide range of luminosity at high redshift.
Abstract: Ultra-deep Advanced Camera for Surveys (ACS) and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope {beta}, of star-forming galaxies over a wide range of luminosity (0.1L*{sub z=3} to 2L*{sub z=3}) at high redshift (z {approx} 7 to z {approx} 4). {beta} is measured using all ACS and WFC3/IR passbands uncontaminated by Ly{alpha} and spectral breaks. Extensive tests show that our {beta} measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their {beta} measurements. To reconcile these different results, we simulated both approaches and found that {beta} measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure {beta}. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer toward fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero point to redder colors from z {approx} 7 to z {approx} 4. This suggests that galaxies are evolvingmore » along a well-defined sequence in the L{sub UV}-color ({beta}) plane (a 'star-forming sequence'?). Dust appears to be the principal factor driving changes in the UV color {beta} with luminosity. These new larger {beta} samples lead to improved dust extinction estimates at z {approx} 4-7 and confirm that the extinction is essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (1) excellent agreement between the star formation rate (SFR) density at z {approx} 4-8 and that inferred from the stellar mass density; and (2) to higher specific star formation rates (SSFRs) at z {approx}> 4, suggesting that the SSFR may evolve modestly (by factors of {approx}2) from z {approx} 4-7 to z {approx} 2.« less

Journal ArticleDOI
TL;DR: In this article, an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association is presented.
Abstract: We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types ~F4 and ~F2, respectively. An analysis of the A-type stars shows US reaching the main sequence at about spectral type ~A3. (3) The median ages for the pre-main-sequence members of UCL and LCC are 16 Myr and 17 Myr, respectively, in agreement with previous studies, however we find that (4) Upper Sco is much older than previously thought. The luminosities of the F-type stars in US are typically a factor of ~2.5 less luminous than predicted for a 5 Myr old population for four sets of evolutionary tracks. We re-examine the evolutionary state and isochronal ages for the B-, A-, and G-type Upper Sco members, as well as the evolved M supergiant Antares, and estimate a revised mean age for Upper Sco of 11 ± 1 ± 2 Myr (statistical, systematic). Using radial velocities and Hipparcos parallaxes we calculate a lower limit on the kinematic expansion age for Upper Sco of >10.5 Myr (99% confidence). However, the data are statistically consistent with no expansion. We reevaluate the inferred masses for the known substellar companions in Upper Sco using the revised age and find that the inferred masses are typically ~20%-70% higher than the original estimates which had assumed a much younger age; specifically, we estimate the mass of 1RXS J1609-2105b to be 14+2 –3 M Jup, suggesting that it is a brown dwarf rather than a planet. Finally, we find the fraction of F-type stars exhibiting Hα emission and/or a K-band excess consistent with accretion to be 0/17 (<19%; 95% CL) in US at ~11 Myr, while UCL has 1/41 (2+5 –1%; 68% CL) accretors and LCC has 1/50 (2+4 –1%; 68% CL) accretors at ~16 Myr and ~17 Myr, respectively.

Journal ArticleDOI
TL;DR: In this article, the authors used the WMAP7 Galactic synchrotron emission map and more than 40,000 extragalactic rotation measures to constrain the parameters of the GMF model, which is substantially generalized compared with earlier work to now include an out-of-plane component and striated random fields.
Abstract: A new, much-improved model of the Galactic magnetic field (GMF) is presented. We use the WMAP7 Galactic synchrotron emission map and more than 40,000 extragalactic rotation measures to constrain the parameters of the GMF model, which is substantially generalized compared with earlier work to now include an out-of-plane component (as suggested by observations of external galaxies) and striated-random fields (motivated by theoretical considerations). The new model provides a greatly improved fit to observations. Consistent with our earlier analyses, the best-fit model has a disk field and an extended halo field. Our new analysis reveals the presence of a large, out-of-plane component of the GMF; as a result, the polarized synchrotron emission of our Galaxy seen by an edge-on observer is predicted to look intriguingly similar to what has been observed in external edge-on galaxies. We find evidence that the cosmic-ray electron density is significantly larger than given by GALPROP or else that there is a widespread striated component to the GMF.

Journal ArticleDOI
TL;DR: The Cosmic Origins Spectrograph (COS) as discussed by the authors is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125).
Abstract: The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

Journal ArticleDOI
TL;DR: In this article, the authors show that the observed data are consistent with a simple, local, volumetric star formation law in which the star formation rate is simply 1% of the molecular gas mass per local free-fall time.
Abstract: Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ~103 M ? to submillimeter galaxies with masses ~1011 M ?, fall on a single star formation law in which the star formation rate is simply ~1% of the molecular gas mass per local free-fall time. In contrast, proposed star formation laws in which the star formation timescale is set by the galactic rotation period are inconsistent with the data from the Milky Way and the Local Group, while those in which the star formation rate is linearly proportional to the gas mass above some density threshold fail both in the Local Group and for starburst galaxies.

Journal ArticleDOI
TL;DR: Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6μm with the Spitzer Space Telescope, a new, high-accuracy calibration was obtained by as mentioned in this paper, which decreased the systematic uncertainty in H 0 over that obtained by the Hubble Space Telescope Key Project by over a factor of three.
Abstract: Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 μm with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 μm data for 10 high-metallicity, Milky Way Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6 μm data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8. We find a new reddening-corrected distance to the LMC of 18.477 ± 0.033 (systematic) mag. We re-examine the systematic uncertainties in H 0, also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H 0 over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H 0 = 74.3 with a systematic uncertainty of ±2.1 (systematic) km s–1 Mpc–1, corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7 measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w 0 = –1.09 ± 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w 0 = –1.08 ± 0.10 and a value of N eff = 4.13 ± 0.67, mildly consistent with the existence of a fourth neutrino species.

Journal ArticleDOI
TL;DR: In this paper, the authors examined magnetorotationally driven supernovae as sources of r-process elements in the early Galaxy and found that the peak distribution of Ye in the ejecta is shifted from 0.15 to 0.17 and broadened toward higher Ye due to neutrino absorption.
Abstract: We examine magnetorotationally driven supernovae as sources of r-process elements in the early Galaxy. On the basis of thermodynamic histories of tracer particles from a three-dimensional magnetohydrodynamical core-collapse supernova model with approximated neutrino transport, we perform nucleosynthesis calculations with and without considering the effects of neutrino absorption reactions on the electron fraction (Ye ) during post-processing. We find that the peak distribution of Ye in the ejecta is shifted from ~0.15 to ~0.17 and broadened toward higher Ye due to neutrino absorption. Nevertheless, in both cases, the second and third peaks of the solar r-process element distribution can be reproduced well. The rare progenitor configuration that was used here, characterized by a high rotation rate and a large magnetic field necessary for the formation of bipolar jets, could naturally provide a site for the strong r-process in agreement with observations of the early Galactic chemical evolution.

Journal ArticleDOI
TL;DR: In this paper, the authors used deep infrared Wide Field Camera 3 data to probe the rest-frame optical structure of 935 galaxies selected with 0.4 10^(10.7) M_☉ in the UKIRT Ultra Deep Survey and GOODS-South fields of the CANDELS survey, finding that 13%-18% of quiescent hosts have likely physical companions with stellar mass ratios of 0.1 or greater.
Abstract: The presence of extremely compact galaxies at z ~ 2 and their subsequent growth in physical size has been the cause of much puzzlement. We revisit the question using deep infrared Wide Field Camera 3 data to probe the rest-frame optical structure of 935 galaxies selected with 0.4 10^(10.7) M_☉ in the UKIRT Ultra Deep Survey and GOODS-South fields of the CANDELS survey. At each redshift, the most compact sources are those with little or no star formation, and the mean size of these systems at fixed stellar mass grows by a factor of 3.5 ± 0.3 over this redshift interval. The data are sufficiently deep to identify companions to these hosts whose stellar masses are ten times smaller. By searching for these around 404 quiescent hosts within a physical annulus 10 h^(–1) kpc < R < 30 h^(–1) kpc, we estimate the minor merger rate over 0.4 < z < 2. We find that 13%-18% of quiescent hosts have likely physical companions with stellar mass ratios of 0.1 or greater. Mergers of these companions will typically increase the host mass by 6% ± 2% per merger timescale. We estimate the minimum growth rate necessary to explain the declining abundance of compact galaxies. Using a simple model motivated by recent numerical simulations, we then assess whether mergers of the faint companions with their hosts are sufficient to explain this minimal rate. We find that mergers may explain most of the size evolution observed at z lsim 1 if a relatively short merger timescale is assumed, but the rapid growth seen at higher redshift likely requires additional physical processes.

Journal ArticleDOI
TL;DR: In this article, a population synthesis model that accounts for the effect of variable abundance ratios of 11 elements was proposed to analyze very high quality absorption line spectra of 38 early-type galaxies and the nuclear bulge of M31.
Abstract: The spectral absorption lines in early-type galaxies contain a wealth of information regarding the detailed abundance pattern, star formation history, and stellar initial mass function (IMF) of the underlying stellar population. Using our new population synthesis model that accounts for the effect of variable abundance ratios of 11 elements, we analyze very high quality absorption line spectra of 38 early-type galaxies and the nuclear bulge of M31. These data extend to 1 μm and they therefore include the IMF-sensitive spectral features Na I, Ca II, and FeH at 0.82 μm, 0.86 μm, and 0.99 μm, respectively. The models fit the data well, with typical rms residuals 1%. Strong constraints on the IMF and therefore the stellar mass-to-light ratio, (M/L)stars, are derived for individual galaxies. We find that the IMF becomes increasingly bottom-heavy with increasing velocity dispersion and [Mg/Fe]. At the lowest dispersions and [Mg/Fe] values the derived IMF is consistent with the Milky Way (MW) IMF, while at the highest dispersions and [Mg/Fe] values the derived IMF contains more low-mass stars (is more bottom-heavy) than even a Salpeter IMF. Our best-fit (M/L)stars values do not exceed dynamically based M/L values. We also apply our models to stacked spectra of four metal-rich globular clusters in M31 and find an (M/L)stars that implies fewer low-mass stars than a MW IMF, again agreeing with dynamical constraints. We discuss other possible explanations for the observed trends and conclude that variation in the IMF is the simplest and most plausible.

Journal ArticleDOI
TL;DR: In this article, a rigorous density modeling approach for Galactic spectroscopic surveys that enables investigation of the global spatial structure of stellar sub-populations in narrow bins of [{alpha}/Fe] and [Fe/H], using 23,767 G-type dwarfs from SDSS/SEGUE, which effectively sample 5 kpc 4.5 kpc to 2 kpc.
Abstract: The spatial, kinematic, and elemental-abundance structure of the Milky Way's stellar disk is complex, and has been difficult to dissect with local spectroscopic or global photometric data. Here, we develop and apply a rigorous density modeling approach for Galactic spectroscopic surveys that enables investigation of the global spatial structure of stellar sub-populations in narrow bins of [{alpha}/Fe] and [Fe/H], using 23,767 G-type dwarfs from SDSS/SEGUE, which effectively sample 5 kpc 4.5 kpc to 2 kpc) for increasingly older sub-populations, as indicated by their lower metallicities and [{alpha}/Fe] enhancements. That the abundance-selected sub-components with the largest scale heights have the shortest scale lengths is inmore » sharp contrast with purely geometric 'thick-thin disk' decompositions. To the extent that [{alpha}/Fe] is an adequate proxy for age, our results directly show that older disk sub-populations are more centrally concentrated, which implies inside-out formation of galactic disks. The fact that the largest scale-height sub-components are most centrally concentrated in the Milky Way is an almost inevitable consequence of explaining the vertical structure of the disk through internal evolution. Whether the simple spatial structure of the mono-abundance sub-components and the striking correlations between age, scale length, and scale height can be plausibly explained by satellite accretion or other external heating remains to be seen.« less

Journal ArticleDOI
TL;DR: In this article, a hydrodynamic supernova (SN) simulation was performed in spherical symmetry for over 100 single stars of solar metallicity to explore the proggenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism.
Abstract: We perform hydrodynamic supernova (SN) simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 M{sub Sun} are compatible with SN 1987A. Thus, we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors' zero-age main-sequence mass. While all progenitors with masses below {approx}15 M{sub Sun} yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weakmore » fallback. Our NS baryonic masses of {approx}1.2-2.0 M{sub Sun} and BH masses >6 M{sub Sun} are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10{sup 50} erg and {approx}2 Multiplication-Sign 10{sup 51} erg but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 M{sub Sun }. These seem to require an alternative SN mechanism.« less

Journal ArticleDOI
TL;DR: AtomDB 2.0.2 as discussed by the authors is a database of atomic data and a plasma modeling code with a focus on X-ray astronomy, including new ionization balance data, state-selective recombination data, and updated collisional excitation data for many ions, including the iron L-shell ions from Fe+16 to Fe+23 and all of the hydrogen- and helium-like sequences.
Abstract: We describe the latest release of AtomDB, version 2.0.2, a database of atomic data and a plasma modeling code with a focus on X-ray astronomy. This release includes several major updates to the fundamental atomic structure and process data held within AtomDB, incorporating new ionization balance data, state-selective recombination data, and updated collisional excitation data for many ions, including the iron L-shell ions from Fe+16 to Fe+23 and all of the hydrogen- and helium-like sequences. We also describe some of the effects that these changes have on calculated emission and diagnostic line ratios, such as changes in the temperature implied by the He-like G-ratios of up to a factor of two.

Journal ArticleDOI
TL;DR: In this paper, the baryon census in the (H I) Ly{alpha} forest and warm-hot IGM (WHIM) at 10{sup 5-6} K traced by O VI {lambda}1032, 1038 absorption was updated.
Abstract: Although galaxies, groups, and clusters contain {approx}10% of the baryons, many more reside in the photoionized and shocked-heated intergalactic medium (IGM) and in the circumgalactic medium (CGM). We update the baryon census in the (H I) Ly{alpha} forest and warm-hot IGM (WHIM) at 10{sup 5-6} K traced by O VI {lambda}1032, 1038 absorption. From Enzo cosmological simulations of heating, cooling, and metal transport, we improve the H I and O VI baryon surveys using spatially averaged corrections for metallicity (Z/Z {sub Sun }) and ionization fractions (f {sub HI}, f {sub OVI}). Statistically, the O VI correction product correlates with column density, (Z/Z {sub Sun })f {sub OVI} Almost-Equal-To (0.015)(N {sub OVI}/10{sup 14} cm{sup -2}){sup 0.70}, with an N {sub OVI}-weighted mean of 0.01, which doubles previous estimates of WHIM baryon content. We also update the Ly{alpha} forest contribution to baryon density out to z = 0.4, correcting for the (1 + z){sup 3} increase in absorber density, the (1 + z){sup 4.4} rise in photoionizing background, and cosmological proper length dl/dz. We find substantial baryon fractions in the photoionized Ly{alpha} forest (28% {+-} 11%) and WHIM traced by O VI and broad-Ly{alpha} absorbers (25% {+-} 8%). The collapsed phasemore » (galaxies, groups, clusters, CGM) contains 18% {+-} 4%, leaving an apparent baryon shortfall of 29% {+-} 13%. Our simulations suggest that {approx}15% reside in hotter WHIM (T {>=} 10{sup 6} K). Additional baryons could be detected in weaker Ly{alpha} and O VI absorbers. Further progress requires higher-precision baryon surveys of weak absorbers, down to minimum column densities N {sub HI} {>=} 10{sup 12.0} cm{sup -2}, N {sub OVI} {>=} 10{sup 12.5} cm{sup -2}, N {sub OVII} {>=} 10{sup 14.5} cm{sup -2}, using high signal-to-noise data from high-resolution UV and X-ray spectrographs.« less