scispace - formally typeset
Search or ask a question
JournalISSN: 1473-4222

The Cerebellum 

Springer Science+Business Media
About: The Cerebellum is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Cerebellum & Ataxia. It has an ISSN identifier of 1473-4222. Over the lifetime, 1774 publications have been published receiving 49435 citations. The journal is also known as: Cerebellum.


Papers
More filters
Journal ArticleDOI
TL;DR: The cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models is considered and some of the ways in which better understanding the Cerebellum's status as a “supervised learning machine” can enrich the ability to understand human function and adaptation are considered.
Abstract: While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.

775 citations

Journal ArticleDOI
TL;DR: This consensus paper discusses the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints, and highlights the diversity of current opinion, providing a framework for debate and discussion.
Abstract: Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.

644 citations

Journal ArticleDOI
TL;DR: The broader role of the cerebellum in the pathogenesis of these neuropsychiatric symptoms is discussed, and the possibility of using cerebellar stimulation to treat psychiatric disorders by enhancing Cerebellar modulation of cognition and emotion is revisited.
Abstract: A central aspect of the cerebellar cognitive affective syndrome is the dysregulation of affect that occurs when lesions involve the ‘limbic cerebellum’ (vermis and fastigial nucleus). In this case series we describe neuropsychiatric disturbances in adults and children with congenital lesions including cerebellar agenesis, dysplasia, and hypoplasia, and acquired conditions including cerebellar stroke, tumor, cerebellitis, trauma, and neurodegenerative disorders. The behaviors that we witnessed and that were described by patients and families included distractibility and hyperactivity, impulsiveness, disinhibition, anxiety, ritualistic and stereotypical behaviors, illogical thought and lack of empathy, as well as aggression and irritability. Ruminative and obsessive behaviors, dysphoria and depression, tactile defensiveness and sensory overload, apathy, childlike behavior, and inability to appreciate social boundaries and assign ulterior motives were also evident. We grouped these disparate neurobehavioral profiles into five major domains, characterized broadly as disorders of attentional control, emotional control, and social skill set as well as autism spectrum disorders, and psychosis spectrum disorders. Drawing on our dysmetria of thought hypothesis, we conceptualized the symptom complexes within each putative domain as reflecting either exaggeration (overshoot, hypermetria) or diminution (hypotonia, or hypometria) of responses to the internal or external environment. Some patients fluctuated between these two states. We consider the implications of these neurobehavioral observations for the care of patients with ataxia, discuss the broader role of the cerebellum in the pathogenesis of these neuropsychiatric symptoms, and revisit the possibility of using cerebellar stimulation to treat psychiatric disorders by enhancing cerebellar modulation of cognition and emotion.

625 citations

Journal ArticleDOI
TL;DR: The diversity of opinions regarding the involvement of this important site in the pathology of autism will be observed, and points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, Cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism.
Abstract: There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene–environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.

586 citations

Journal ArticleDOI
TL;DR: The functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks are related.
Abstract: Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.

559 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202382
2022161
2021177
202090
2019107
201882