scispace - formally typeset
Search or ask a question

Showing papers in "The EMBO Journal in 1994"


Journal ArticleDOI
TL;DR: This work created highly diverse repertoires of heavy and light chains entirely in vitro from a bank of human V gene segments and generated a large synthetic repertoire of Fab fragments displayed on filamentous phage to help dissect the contributions of biological mechanisms and structural features governing V gene usage in vivo.
Abstract: Antibody fragments of moderate affinity (approximately microM) can be isolated from repertoires of approximately 10(8) immunoglobulin genes by phage display and rounds of selection with antigen, and the affinities improved by further rounds of mutation and selection. Here, as an alternative strategy, we attempted to isolate high affinity human antibodies directly from large repertoires. We first created highly diverse repertoires of heavy and light chains entirely in vitro from a bank of human V gene segments and then, by recombination of the repertoires in bacteria, generated a large (close to 6.5 x 10(10)) synthetic repertoire of Fab fragments displayed on filamentous phage. From this repertoire we isolated Fab fragments which bound to a range of different antigens and haptens, and with affinities comparable with those of antibodies from a secondary immune response in mice (up to 4 nM). Although the VH-26 (DP-47) segment was the most commonly used segment in both artificial and natural repertoires, there were also major differences in the pattern of segment usage. Such comparisons may help dissect the contributions of biological mechanisms and structural features governing V gene usage in vivo.

1,286 citations


Journal ArticleDOI
TL;DR: IL‐15 utilizes the common IL‐2R gamma subunit found to be defective in X‐linked severe combined immunodeficiency in humans, and is the only cytokine other thanIL‐2 that has also been shown to share the beta signaling subunit of IL‐ 2R.
Abstract: We have recently cloned a novel cytokine, IL-15, with shared bioactivities but no sequence homology with IL-2. We found high affinity IL-15 binding to many cell types, including cells of non-lymphoid origin. Analysis of IL-15 interaction with subunits of the IL-2 receptor (IL-2R) revealed that the alpha subunit was not involved in IL-15 binding. We demonstrated directly in cells transfected with IL-2R subunits that both the beta and gamma chains are required for IL-15 binding and signaling. Hence, IL-15, like IL-2, IL-4 and IL-7, utilizes the common IL-2R gamma subunit found to be defective in X-linked severe combined immunodeficiency in humans. IL-15 is the only cytokine other than IL-2 that has also been shown to share the beta signaling subunit of IL-2R. The differential ability of some cells to bind and respond to IL-2 and IL-15 implies the existence of an additional IL-15-specific component.

999 citations


Journal ArticleDOI
TL;DR: The opposite effects of the rab5 Q79L and S34N mutants suggest that rab5:GTP is required prior to membrane fusion, whereas GTP hydrolysis by rab5 occurs after membrane fusion and functions to inactivate the protein.
Abstract: Small GTPases of the rab family control distinct steps of intracellular transport. The function of their GTPase activity is not completely understood. To investigate the role of the nucleotide state of rab5 in the early endocytic pathway, the effects of two mutants with opposing biochemical properties were tested. The Q79L mutant of rab5, analogous with the activating Q61L mutant of p21-ras, was found to have a strongly decreased intrinsic GTPase activity and was, unlike wild-type rab5, found mainly in the GTP-bound form in vivo. Expression of this protein in BHK and HeLa cells led to a dramatic change in cell morphology, with the appearance of unusually large early endocytic structures, considerably larger than those formed upon overexpression of wild-type rab5. An increased rate of transferrin internalization was observed in these cells, whereas recycling was inhibited. Cytosol containing rab5 Q79L stimulated homotypic early endosome fusion in vitro, even though it contained only a small amount of the isoprenylated protein. A different mutant, rab5 S34N, was found, like the inhibitory p21-ras S17N mutant, to have a preferential affinity for GDP. Overexpression of rab5 S34N induced the accumulation of very small endocytic profile and inhibited transferrin endocytosis. This protein inhibited fusion between early endosomes in vitro. The opposite effects of the rab5 Q79L and S34N mutants suggest that rab5:GTP is required prior to membrane fusion, whereas GTP hydrolysis by rab5 occurs after membrane fusion and functions to inactivate the protein.

931 citations


Journal ArticleDOI
TL;DR: The mammary gland factor, MGF, has been shown to be a central mediator in the lactogenic hormone response and the DNA binding activity of MGF is hormonally regulated and essential for beta‐casein promoter activity.
Abstract: Milk protein gene expression in mammary epithelial cells is regulated by the action of the lactogenic hormones insulin, glucocorticoids and prolactin. The mammary gland factor, MGF, has been shown to be a central mediator in the lactogenic hormone response. The DNA binding activity of MGF is hormonally regulated and essential for beta-casein promoter activity. We have used Red A Sepharose- and sequence-specific DNA affinity chromatography to purify MGF from mammary gland tissue of lactating sheep. Proteins of 84 and 92 kDa were obtained, proteolytically digested and the resulting peptides separated by reverse phase high pressure liquid chromatography. The 84 and 92 kDa proteins yielded very similar peptide patterns. The amino acid sequence of two peptides was determined. The sequence information was used to derive oligonucleotide probes. A cDNA library from the mRNA of mammary gland tissue of lactating sheep was screened and a molecular clone encoding MGF was isolated. MGF consists of 734 amino acids and has sequence homology with the 113 (Stat113) and 91 kDa (Stat91) components of ISGF3, transcription factors which are signal transducers of IFN-alpha/beta and IFN-gamma. Two species of MGF mRNA of 6.5 and 4.5 kb were detected in mammary gland tissue of lactating sheep. Lower mRNA expression was found in ovary, thymus, spleen, kidney, lung, muscle and the adrenal gland. MGF cDNA was incorporated into a eukaryotic expression vector and cotransfected with a vector encoding the long form of the prolactin receptor into COS cells. A strong MGF-specific bandshift was obtained with nuclear extracts of COS cells induced with prolactin. Treatment of activated MGF with a tyrosine-specific protein phosphatase resulted in the loss of DNA binding activity. Prolactin-dependent transactivation of a beta-casein promoter-luciferase reporter gene construct was observed in transfected cells.

821 citations


Journal ArticleDOI
TL;DR: The data suggest that synaptobrevin, syntaxin and SNAP‐25 associate into a unique stable complex that functions in synaptic vesicle exocytosis, suggesting that membrane fusion involves intermolecular interactions via coiled‐coil structures.
Abstract: Clostridial neurotoxins inhibit neurotransmitter release by selective and specific intracellular proteolysis of synaptobrevin/VAMP, synaptosomal-associated protein of 25 kDa (SNAP-25) or syntaxin. Here we show that in binary reactions synaptobrevin binds weakly to both SNAP-25 and syntaxin, and SNAP-25 binds to syntaxin. In the presence of all three components, a dramatic increase in the interaction strengths occurs and a stable sodium dodecyl sulfate-resistant complex forms. Mapping of the interacting sequences reveals that complex formation correlates with the presence of predicted alpha-helical structures, suggesting that membrane fusion involves intermolecular interactions via coiled-coil structures. Most toxins only attack the free, and not the complexed, proteins, and proteolysis of the proteins by different clostridial neurotoxins has distinct inhibitory effects on the formation of synaptobrevin-syntaxin-SNAP-25 complexes. Our data suggest that synaptobrevin, syntaxin and SNAP-25 associate into a unique stable complex that functions in synaptic vesicle exocytosis.

800 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Myc‐induced apoptosis in low serum is inhibited by a restricted group of cytokines, principally the insulin‐like growth factors and PDGF, and Cytokine‐mediated protection from apoptosis is not linked to the cytokines’ abilities to promote growth.
Abstract: We have investigated the mechanism by which deregulated expression of c-Myc induces death by apoptosis in serum-deprived fibroblasts. We demonstrate that Myc-induced apoptosis in low serum is inhibited by a restricted group of cytokines, principally the insulin-like growth factors and PDGF. Cytokine-mediated protection from apoptosis is not linked to the cytokines' abilities to promote growth. Protection from apoptosis is evident in the post-commitment (mitogen-independent) S/G2/M phases of the cell cycle and also in cells that are profoundly blocked in cell cycle progression by drugs. Moreover, IGF-I inhibition of apoptosis occurs in the absence of protein synthesis, and so does not require immediate early gene expression. We conclude that c-Myc-induced apoptosis does not result from a conflict of growth signals but appears to be a normal physiological aspect of c-Myc function whose execution is regulated by the availability of survival factors. We discuss the possible implications of these findings for models of mammalian cell growth in vivo.

789 citations


Journal ArticleDOI
TL;DR: It is reported that IL‐6 deficient mice generated by gene targeting are viable and do not present any evident phenotypic abnormality, and analysis of bone metabolism revealed a specific bone phenotype, indicating that IL-6 plays an important role in the local regulation of bone turnover.
Abstract: Interleukin-6 (IL-6) is a multifunctional cytokine whose circulating levels are under physiological conditions below detection, but whose production is rapidly and strongly induced by several pathological and inflammatory stimuli. IL-6 has been implicated in a number of cell functions connected to immunity and hematopoiesis. Recently, it has been proposed to act as a stimulator of osteoclast formation and activity, in particular following estrogen depletion. The purpose of this study was to gain additional insights into the role of IL-6 during development, as well as in physiological and pathological conditions. We report here that IL-6 deficient mice generated by gene targeting are viable and do not present any evident phenotypic abnormality. However, analysis of bone metabolism revealed a specific bone phenotype. IL-6 deficient female mice have a normal amount of trabecular bone, but higher rates of bone turnover than control littermates. Estrogen deficiency induced by ovariectomy causes in wild type animals a significant loss of bone mass together with an increase in bone turnover rates. Strikingly, ovariectomy does not induce any change in either bone mass or bone remodeling rates in the IL-6 deficient mice. These findings indicate that IL-6 plays an important role in the local regulation of bone turnover and, at least in mice, appears to be essential for the bone loss caused by estrogen deficiency.

758 citations


Journal ArticleDOI
TL;DR: Evidence is presented that the multicatalytic cytosolic protease (proteasome) is involved in the degradation of I kappa B‐alpha, and Pyrrolidinedithiocarbamate, an antioxidant inhibitor of NF‐kappa B activation which did not interfere with proteasome activities, prevented de novo phosphorylation of IKappa B-alpha as well as its subsequent degradation.
Abstract: Activation of the inducible transcription factor NF-kappa B involves removal of the inhibitory subunit I kappa B-alpha from a latent cytoplasmic complex. It has been reported that I kappa B-alpha is subject to both phosphorylation and proteolysis in the process of NF-kappa B activation. In this study, we present evidence that the multicatalytic cytosolic protease (proteasome) is involved in the degradation of I kappa B-alpha. Micromolar amounts of the peptide Cbz-Ile-Glu(O-t-Bu)-Ala-leucinal (PSI), a specific inhibitor of the chymotrypsin-like activity of the proteasome, prevented activation of NF-kappa B in response to tumor necrosis factor-alpha (TNF) and okadaic acid (OA) through inhibition of I kappa B-alpha degradation. The m-calpain inhibitor Cbz-Leu-leucinal was ineffective. In the presence of PSI, a newly phosphorylated form of I kappa B-alpha accumulated in TNF- and OA-stimulated cells. However, the covalent modification of I kappa B-alpha was not sufficient for activation of NF-kappa B: no substantial NF-kappa B DNA binding activity appeared in cells because the newly phosphorylated form of I kappa B-alpha was still tightly bound to p65 NF-kappa B. Pyrrolidinedithiocarbamate, an antioxidant inhibitor of NF-kappa B activation which did not interfere with proteasome activities, prevented de novo phosphorylation of I kappa B-alpha as well as its subsequent degradation. This suggests that phosphorylation of I kappa B-alpha is equally necessary for the activation of NF-kappa B.(ABSTRACT TRUNCATED AT 250 WORDS)

731 citations


Journal ArticleDOI
TL;DR: The use of the display of repertoires of antibody fragments on the surface of filamentous bacteriophage to make immunochemical reagents to a range of antigens by selection from a repertoire of > 10(8) clones made in vitro from human V gene segments shows that antibody reagents for research can be readily derived from ‘single pot’ phage display libraries.
Abstract: The display of repertoires of antibody fragments on the surface of filamentous bacteriophage offers a new way of making antibodies with predefined binding specificities. Here we explored the use of this technology to make immunochemical reagents to a range of antigens by selection from a repertoire of > 10(8) clones made in vitro from human V gene segments. From the same 'single pot' repertoire, phage were isolated with binding activities to each of 18 antigens, including the intracellular proteins p53, elongation factor EF-1 alpha, immunoglobulin binding protein, rhombotin-2 oncogene protein and sex determining region Y protein. Both phage and scFv fragments secreted from infected bacteria were used as monoclonal and polyclonal reagents in Western blots. Furthermore the monoclonal reagents were used for epitope mapping (a new epitope of p53 was identified) and for staining of cells. This shows that antibody reagents for research can be readily derived from 'single pot' phage display libraries.

703 citations


Journal ArticleDOI
TL;DR: The generation of infectious rabies virus (RV), a non‐segmented negative‐stranded RNA virus of the Rhabdoviridae family, entirely from cloned cDNA is described, and the possibility of manipulating the RV genome by recombinant DNA techniques using the described procedure greatly facilitates the investigation of RV genetics, virus‐host interactions and rabies pathogenesis.
Abstract: The generation of infectious rabies virus (RV), a non-segmented negative-stranded RNA virus of the Rhabdoviridae family, entirely from cloned cDNA is described. Simultaneous intracellular expression of genetically marked full-length RV antigenome-like T7 RNA polymerase transcripts and RV N, P and L proteins from transfected plasmids resulted in formation of transcriptionally active nucleocapsids and subsequent assembly and budding of infectious rabies virions. In addition to authentic RV, two novel infectious RVs characterized by predicted transcription patterns were recovered from modified cDNA. Deletion of the entire non-translated pseudogene region, which is conserved in all naturally occurring RVs, did not impair propagation of the resulting virus in cell culture. This indicates that non-essential genetic material might be present in the genomes of non-segmented RNA viruses. The introduction of a functional extra cistron border into the genome of another virus resulted in the transcription of an additional polyadenylated mRNA containing pseudogene sequences. The possibility of manipulating the RV genome by recombinant DNA techniques using the described procedure--potentially applicable also for other negative-stranded viruses--greatly facilitates the investigation of RV genetics, virus-host interactions and rabies pathogenesis and provides a tool for the design of new generations of live vaccines.

699 citations


Journal ArticleDOI
TL;DR: It is suggested that Sp3 is an inhibitory member of the Sp family, and neither the glutamine‐rich domains A and B nor the D domain of Sp1 can be replaced by the homologous regions of Sp3.
Abstract: Sp1, Sp3 (SPR-2) and Sp4 (SPR-1) are human sequence-specific DNA binding proteins with very similar structural features In this report, we have analyzed Sp3 in direct comparison with Sp1 We have raised antibodies against both Sp1 and Sp3, and show that Sp3 protein, like Sp1, is expressed in various cell lines Co-transfection experiments in different mammalian cell lines reveal that in contrast to Sp1 and Sp4, Sp3 is not able to activate several Sp1 responsive promoters In addition, Sp3 also fails to activate reporter constructs in Drosophila SL2 cells lacking endogenous Sp factors Instead, we find that Sp3 represses Sp1-mediated activation in a linear dose-dependent manner A mutant of Sp3 lacking the DNA binding domain does not affect activation by Sp1, suggesting that the inhibition is most likely due to the competition with Sp1 for their common binding sites To determine if any structurally similar domain of Sp3 is able to replace partially homologous domains of Sp1, we have generated chimeric proteins and tested their activation characteristics in gene transfer experiments It appears that neither the glutamine-rich domains A and B nor the D domain of Sp1 can be replaced by the homologous regions of Sp3 Our results suggest that Sp3 is an inhibitory member of the Sp family

Journal ArticleDOI
TL;DR: It is demonstrated that Syk mediates IP3 generation, whereas Lyn regulates Ca2+ mobilization through a process independent of IP3generation, despite the normal kinetics ofIP3 turnover.
Abstract: Stimulation of B lymphocytes through their antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins and induces both an increase of phosphatidylinositol and mobilization of cytoplasmic free calcium. The BCR associates with two classes of tyrosine kinase: Src-family kinase (Lyn, Fyn, Blk or Lck) and Syk kinase. To dissect the functional roles of these two types of kinase in BCR signaling, lyn-negative and syk-negative B cell lines were established. Syk-deficient B cells abolished the tyrosine phosphorylation of phospholipase C-gamma 2, resulting in the loss of both inositol 1,4,5-trisphosphate (IP3) generation and calcium mobilization upon receptor stimulation. Crosslinking of BCR on Lyn-deficient cells evoked a delayed and slow Ca2+ mobilization, despite the normal kinetics of IP3 turnover. These results demonstrate that Syk mediates IP3 generation, whereas Lyn regulates Ca2+ mobilization through a process independent of IP3 generation.

Journal ArticleDOI
TL;DR: The p130 (designated Cas for Crk‐associated substrate) is a common cellular target of phosphorylation signal via v‐Crk and v‐Src oncoproteins, and its unique structure indicates the possible role of p130Cas in assembling signals from multiple SH2‐containing molecules.
Abstract: p47v-crk (v-Crk), a transforming gene product containing Src homology (SH)-2 and -3 domains, induces an elevated level of tyrosine phosphorylation of several cellular proteins. Among these proteins, a 125-135 kDa protein (p130) shows marked phosphorylation at tyrosines and tight association with v-Crk, suggesting a direct signal mediator of v-Crk. Here we report the molecular cloning of rat p130 by immunoaffinity purification. The p130 is a novel SH3-containing signaling molecule with a cluster of multiple putative SH2-binding motifs of v-Crk. Immunochemical analyses revealed that p130 is highly phosphorylated at tyrosines during transformation by p60v-src (v-Src), as well as by v-Crk, forming stable complexes with these oncoproteins. The p130 behaves as an extremely potent substrate of kinase activity included in the complexes and it is a major v-Src-associated substrate of the Src kinase by partial peptidase mapping. Subcellular fractionation demonstrated that the cytoplasmic p130 could move to the membrane upon tyrosine phosphorylation. The p130 (designated Cas for Crk-associated substrate) is a common cellular target of phosphorylation signal via v-Crk and v-Src oncoproteins, and its unique structure indicates the possible role of p130Cas in assembling signals from multiple SH2-containing molecules.

Journal ArticleDOI
TL;DR: The results suggest that the pathogen senses cell structures and focuses the transfer of YopE to occur solely at the interaction zone between the bacterium and the eukaryotic cell.
Abstract: Pathogenic bacteria of the species Yersinia, including Yersinia pestis, block phagocytosis by macrophages This process involves the YopE protein, which induces disruption of the host cell actin microfilament structure Here, we show that the contact between the pathogen and the mammalian cell induces expression and then polarized transfer of YopE into the eukaryotic cell While the bacteria remain at the surface of the target cell, the YopE cytotoxin is transferred through the host cell plasma membrane and YopE is only recovered within the cytosol of the target cell The results suggest that the pathogen senses cell structures and focuses the transfer of YopE to occur solely at the interaction zone between the bacterium and the eukaryotic cell The regulation of this process is shown to involve surface-located YopN sensor protein of the bacterium

Journal ArticleDOI
TL;DR: The homology of Su(var)3‐9 to both negative (Polycomb and Enhancer of zeste) and positive (trithorax) regulators of the Antennapedia and Bithsorax complexes also suggests similarities in the molecular processes connected with stable transmission of a determined state and the clonal propagation of heterochromatinization.
Abstract: Modifier mutations of position-effect variegation (PEV) represent a useful tool for a genetic and molecular dissection of genes connected with chromatin regulation in Drosophila The Su(var)3-9 gene belongs to the group of haplo suppressor loci which manifest a triplo enhancer effect Mutations show a strong suppressor effect even in the presence of PEV enhancer mutations, indicating a central role of this gene in the regulation of PEV By molecular analysis, Su(var)3-9 could be correlated with a 24 kb transcript which encodes a putative protein of 635 amino acids containing a chromo domain and a region of homology to Enhancer of zeste and trithorax, two antagonistic regulators of the Antennapedia and Bithorax gene complexes, as well as to the human protein ALL-1/Hrx which is implicated in acute leukemias This region of homology is found in all four proteins at the C-terminus The homology of Su(var)3-9 to both negative (Polycomb and Enhancer of zeste) and positive (trithorax) regulators of the Antennapedia and Bithorax complexes also suggests similarities in the molecular processes connected with stable transmission of a determined state and the clonal propagation of heterochromatinization

Journal ArticleDOI
TL;DR: The mechanisms involved in the prolactin activation of Stat5 in COS cells co‐transfected with cDNA encoding Stat5 and the Prolactin receptor are studied to determine whether this activation does not require ongoing protein synthesis.
Abstract: Mammary gland factor (MGF) is a transcription factor discovered initially in the mammary epithelial cells of lactating animals. It confers the lactogenic hormone response to the milk protein genes. We reported recently the isolation of the cDNA encoding MGF. MGF is a novel member of the cytokine-regulated transcription factor gene family. Members of this gene family mediate interferon alpha/beta and interferon gamma induction of gene transcription, as well as the response to epidermal growth factor and interleukin-6, and have been named signal transducers and activators of transcription (Stat). The name Stat5 has been assigned to MGF. We studied the mechanisms involved in the prolactin activation of Stat5 in COS cells co-transfected with cDNA encoding Stat5 and the prolactin receptor. Prolactin treatment of the transfected cells caused activation of Stat5 within 5-10 min. This activation does not require ongoing protein synthesis. Tyrosine kinase inhibitors prevent Stat5 activation in transfected COS cells. Treatment of recombinant Stat5 with a tyrosine-specific protein phosphatase in vitro abolishes its DNA binding activity. Prolactin stimulation of transfected cells induces Stat5 phosphorylation on tyrosine. Phosphorylation of in vitro transcribed and translated Stat5 with the Jak2 tyrosine kinase, but not with fyn, lyn or lck, confers DNA binding activity. The prolactin response of the beta-casein milk protein gene promoter can be observed in COS cells transfected with cDNA vectors encoding Stat5 and the long form of the prolactin receptor. The short form of the prolactin receptor is unable to promote Stat5 phosphorylation and confer transcriptional induction in COS cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: It is shown that anucleate cytoplasts can undergo programmed cell death and that Bcl‐2 and extracellular survival signals can protect them, indicating that, in some cases at least, the nucleus is not required for PCD or for B cl‐2 or survival factor protection.
Abstract: The molecular basis of programmed cell death (PCD) is unknown. An important clue is provided by the Bcl-2 protein, which can protect many cell types from PCD, although it is not known where or how it acts. Nuclear condensation, DNA fragmentation and a requirement for new RNA and protein synthesis are often considered hallmarks of PCD. We show here, however, that anucleate cytoplasts can undergo PCD and that Bcl-2 and extracellular survival signals can protect them, indicating that, in some cases at least, the nucleus is not required for PCD or for Bcl-2 or survival factor protection. We propose that PCD, like the cell cycle, is orchestrated by a cytoplasmic regulator that has multiple intracellular targets.

Journal ArticleDOI
TL;DR: Analysis of MAPKK1 mutants in which either Ser217 or Ser221 were changed to glutamic acid, and the finding that inactivation of maximally activatedMAPKK1 required the dephosphorylated of both serines, shows that phosphorylation of either residue is sufficient for maximal activation.
Abstract: Many growth factors whose receptors are protein tyrosine kinases stimulate the MAP kinase pathway by activating first the GTP-binding protein Ras and then the protein kinase p74raf-1. p74raf-1 phosphorylates and activates MAP kinase kinase (MAPKK). To understand the mechanism of activation of MAPKK, we have identified Ser217 and Ser221 of MAPKK1 as the sites phosphorylated by p74raf-1. This represents the first characterization of sites phosphorylated by this proto-oncogene product. Ser217 and Ser221 lie in a region of the catalytic domain where the activating phosphorylation sites of several other protein kinases are located. Among MAPKK family members, this region is the most conserved, suggesting that all members of the family are activated by the phosphorylation of these sites. A 'kinase-dead' MAPKK1 mutant was phosphorylated at the same residues as the wild-type enzyme, establishing that both sites are phosphorylated directly by p74raf-1, and not by autophosphorylation. Only the diphosphorylated form of MAPKK1 (phosphorylated at both Ser217 and Ser221) was detected, even when the stoichiometry of phosphorylation by p74raf-1 was low, indicating that phosphorylation of one of these sites is rate limiting, phosphorylation of the second then occurring extremely rapidly. Ser217 and Ser221 were both phosphorylated in vivo within minutes when PC12 cells were stimulated with nerve growth factor. Analysis of MAPKK1 mutants in which either Ser217 or Ser221 were changed to glutamic acid, and the finding that inactivation of maximally activated MAPKK1 required the dephosphorylation of both serines, shows that phosphorylation of either residue is sufficient for maximal activation.

Journal ArticleDOI
TL;DR: The distribution of core histone acetylation across the chicken beta‐globin locus has been mapped in 15 day chicken embryo erythrocytes by immunoprecipitation of mononucleosomes with an antibody recognizing acetylated histones, followed by hybridization probing at several points in the locus.
Abstract: The distribution of core histone acetylation across the chicken beta-globin locus has been mapped in 15 day chicken embryo erythrocytes by immunoprecipitation of mononucleosomes with an antibody recognizing acetylated histones, followed by hybridization probing at several points in the locus. A continuum of acetylation was observed, covering both genes and intergenic regions. Using the same probes, the generalized sensitivity to DNase I was mapped by monitoring the disappearance of intact genomic restriction fragments from Southern transfers. Close correspondence between the 33 kb of sensitive chromatin and the extent of acetylation indicates that one role of the modification could be the generation and/or maintenance of the open conformation. The precision of acetylation mapping makes it a possible approach to the definition of chromosomal domain boundaries.

Journal ArticleDOI
TL;DR: It is shown that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress and are also activated by low external pH, sorbate, benzoate or ethanol stress.
Abstract: The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress. This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1-dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross-protection against osmotic stress.

Journal ArticleDOI
TL;DR: It is shown here by point mutations in the DNA binding domain and by the choice of steroid ligands that repression of AP‐1 activity and transactivation functions of the glucocorticoid receptor (GR) are separable entities.
Abstract: Steroid receptors activate and repress genes. An important class of genes that they repress is controlled by the transcription factor AP-1. The activity of AP-1 is inhibited by the receptor, a mechanism exploited for the therapy of various forms of pathological hyperproliferation in humans. We show here by point mutations in the DNA binding domain and by the choice of steroid ligands that repression of AP-1 activity and transactivation functions of the glucocorticoid receptor (GR) are separable entities. While DNA binding and activation of glucocorticoid-regulated promoters require GR dimerization, we present data that suggest that repression is a function of GR monomers.

Journal ArticleDOI
TL;DR: The results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto‐amplification loop analogous to that described at the G2/M transition.
Abstract: Progression through the cell cycle is monitored at two major points: during the G1/S and the G2/M transitions. In most cells, the G2/M transition is regulated by the timing of p34cdc2 dephosphorylation which results in the activation of the kinase activity of the cdc2-cyclin B complex. The timing of p34cdc2 dephosphorylation is determined by the balance between the activity of the kinase that phosphorylates p34cdc2 (wee1 in human cells) and the opposing phosphatase (cdc25C). Both enzymes are regulated and it has been shown that cdc25C is phosphorylated and activated by the cdc2-cyclin B complex. This creates a positive feed-back loop providing a switch used to control the onset of mitosis. Here, we show that another member of the human cdc25 family, cdc25A, undergoes phosphorylation during S phase, resulting in an increase of its phosphatase activity. The phosphorylation of cdc25A is dependent on the activity of the cdc2-cyclin E kinase. Microinjection of anti-cdc25A antibodies into G1 cells blocks entry into S phase. These results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto-amplification loop analogous to that described at the G2/M transition. We discuss the nature of the in vivo substrate of the cdc25A phosphatase in S phase and the possible implications for the regulation of S phase entry.

Journal ArticleDOI
TL;DR: Genistein inhibited the Rho‐dependent clustering of phosphotyrosine‐containing proteins at focal adhesions, and the increased tyrosine phosphorylation of several proteins including pp125FAK, induced by LPA and bombesin, suggesting a model where RHo‐induced activation of a tyrosinesine kinase is required for the formation of stress fibres.
Abstract: Lysophosphatidic acid (LPA) and bombesin rapidly stimulate the formation of focal adhesions and actin stress fibres in serum-starved Swiss 3T3 fibroblasts, a process regulated by the small GTP binding protein Rho. To investigate further the signalling pathways leading to these responses, we have tested the roles of three intracellular signals known to be induced by LPA: activation of protein kinase C (PK-C), Ca2+ mobilization and decreased cAMP levels. Neither PK-C activation nor increased [Ca2+]i, alone or in combination, induced stress fibre formation, and in fact activators of PK-C inhibited this response to LPA and bombesin. The G(i)-mediated decrease in cAMP was not required for the response to LPA, and increased cAMP levels did not prevent stress fibre formation. In contrast, the tyrosine kinase inhibitor genistein inhibited the formation of stress fibres induced by both extracellular factors and microinjected Rho protein. Genistein also inhibited the Rho-dependent clustering of phosphotyrosine-containing proteins at focal adhesions, and the increased tyrosine phosphorylation of several proteins including pp125FAK, induced by LPA and bombesin. This suggests a model where Rho-induced activation of a tyrosine kinase is required for the formation of stress fibres.

Journal ArticleDOI
Sean S. Molloy1, Laurel Thomas1, J.K. VanSlyke1, P.E. Stenberg1, Gary Thomas1 
TL;DR: Pulse‐chase and immunofluorescence analyses demonstrated that proregion removal occurs in the endoplasmic reticulum and that cleavage may be required for exist from this compartment, and it is shown that pro region removal is necessary but not sufficient for enzyme activation.
Abstract: Furin is a membrane-associated endoprotease that efficiently cleaves precursor proteins on the C-terminal side of the consensus sequence, Arg-X-Lys/Arg-Arg1, and has been proposed to catalyze these reactions in both exocytic and endocytic compartments. To study its biosynthesis and routing, a furin construct (designated fur/f) containing the FLAG epitope tag inserted on the C-terminal side of the enzyme's autoproteolytic maturation site was used. Introduction of the epitope tag had no effect on the expression, proteolytic maturation or activity of furin. Analysis of the localization of fur/f by immunofluorescence microscopy showed that its staining pattern largely overlapped with those of several Golgi-associated markers. Treatment of cells with brefeldin A caused the fur/f distribution to collapse around the microtubule organizing center, indicating that furin is concentrated in the trans-Golgi network (TGN). Immunoelectron microscopy showed unequivocally that furin resides in the TGN where it colocalized with TGN38. In agreement with its proposed activity in multiple compartments, antibody uptake studies showed that fur/f cycles between the cell surface and TGN. Furthermore, targeting to the TGN requires sequences in the cytoplasmic tail of the enzyme. Pulse-chase and immunofluorescence analyses demonstrated that proregion removal occurs in the endoplasmic reticulum and that cleavage may be required for exist from this compartment. Finally, we show that proregion removal is necessary but not sufficient for enzyme activation.

Journal ArticleDOI
TL;DR: Results indicate that this increase in YAP1‐specific binding to DNA is not due to an increase in synthesis of Yap1 protein, but rather results from modification of pre‐existing protein.
Abstract: The role of the YAP1 transcription factor in the response of Saccharomyces cerevisiae cells to a variety of conditions that induce oxidative stress has been investigated. Cells deficient in YAP1 were found to be hypersensitive to hydroperoxides and thioloxidants, whereas overexpression of YAP1 conferred hyper-resistance to the same conditions. These treatments resulted in an increase in YAP1-specific binding to DNA together with an increase in YAP1 dependent transcription. Our results indicate that this increase is not due to an increase in synthesis of YAP1 protein, but rather results from modification of pre-existing protein. Using a specific genetic screen, the TRX2 gene, one of two genes of S. cerevisiae that encode thioredoxin protein, was identified as being essential for YAP1 dependent resistance to hydroperoxides. Furthermore, efficient expression of TRX2 was dependent on YAP1 and enhanced under conditions of oxidative stress.

Journal ArticleDOI
TL;DR: UV light‐induced protein‐RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein, and it was shown that this oligoribia containing 5′ and 3′ pre‐mRNA splice sites are potent inhibitors of in vitro pre‐ mRNA splicing.
Abstract: Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.

Journal ArticleDOI
TL;DR: Using a topological assay, it is demonstrated that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non‐hydrolysable analogue ATP gamma S.A.
Abstract: In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.

Journal ArticleDOI
TL;DR: It is proposed that the expression of dpp near the anterior‐posterior compartment boundary is directed by the interaction between patched and hh, and that dpp itself could act as a general organizer of the patterning in the wing imaginal disc.
Abstract: In the wing imaginal disc, the decapentaplegic (dpp) gene is expressed in a stripe of anterior cells near the anterior-posterior compartment boundary, and it is required solely in these cells for the entire disc to develop. In some viable segment polarity mutants, alterations in dpp expression have been demonstrated that correlate with changes in wing morphology. To test the hypothesis that the abnormal patterns of dpp expression are responsible directly for the mutant phenotypes, we have expressed dpp in ectopic places in wing imaginal discs, and we have found that dpp is able to cause overgrowth and pattern duplications in both anterior and posterior compartments of the wing disc. The alterations of the anterior compartment are strikingly similar to those observed in some viable segment polarity mutants. Thus, ectopic dpp alone can account for the phenotype of these mutants. We also show that ectopic expression of the segment polarity gene hedgehog (hh) gives similar morphological changes and activates dpp expression in the anterior compartment. This strongly suggests that the organizating activity of hh is mediated by dpp. We propose that the expression of dpp near the anterior-posterior compartment boundary is directed by the interaction between patched and hh, and that dpp itself could act as a general organizer of the patterning in the wing imaginal disc.

Journal ArticleDOI
TL;DR: Results suggest that cyclin G might participate in a p53‐mediated pathway to prevent tumorigenesis.
Abstract: Through a PCR-based differential screening method, cyclin G was identified as a novel transcriptional target of the p53 tumor suppressor gene product. In both a mouse p53 temperature-sensitive leukemic cell line and mouse embryonic fibroblasts (MEF) after gamma-irradiation, cyclin G mRNA was rapidly induced. MEF from a p53-deficient mouse expressed cyclin G at a level > 10-fold lower than that from a wild-type mouse. Using a DNA binding assay, a specific p53 binding site was identified upstream from the cyclin G gene, which functioned as a p53-dependent cis-acting element in a transient transfection assay. These results suggest that cyclin G might participate in a p53-mediated pathway to prevent tumorigenesis.

Journal ArticleDOI
TL;DR: Findings indicate that this G1 cyclin can modulate differentiation and collaborate with myc‐like genes in oncogenesis, as well as indicating that this cyclin D1 expression is lymphomagenic.
Abstract: Cyclin D1 is the regulatory subunit of certain protein kinases thought to advance the G1 phase of the cell cycle Deregulated cyclin D1 expression has been implicated in several human neoplasms, most consistently in centrocytic B lymphoma, where the cyclin D1 gene usually has been translocated to an immunoglobulin locus To determine directly whether constitutive cyclin D1 expression is lymphomagenic, transgenic mice were generated having the cyclin D1 gene linked to an immunoglobulin enhancer Despite abundant transgene expression, their lymphocytes were normal in cell cycle activity, size and mitogen responsiveness, but young transgenic animals contained fewer mature B- and T-cells Although spontaneous tumours were infrequent, lymphomagenesis was much more rapid in mice that co-expressed the cyclin D1 transgene and a myc transgene than in mice expressing either transgene alone Moreover, the spontaneous lymphomas of myc transgenic animals often ectopically expressed the endogenous cyclin D1 gene These findings indicate that this G1 cyclin can modulate differentiation and collaborate with myc-like genes in oncogenesis