scispace - formally typeset
Search or ask a question

Showing papers in "The EMBO Journal in 2005"


Journal ArticleDOI
TL;DR: Comparisons of S proteins of SARS‐CoV isolated during the 2002–2003 SARS outbreak and during the much less severe 2003–2004 outbreak, and from palm civets, provide insight into the severity of the 2002‐ 2003 SARS epidemic.
Abstract: Human angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS coronavirus (SARS-CoV) Here we identify the SARS-CoV spike (S)-protein-binding site on ACE2 We also compare S proteins of SARS-CoV isolated during the 2002-2003 SARS outbreak and during the much less severe 2003-2004 outbreak, and from palm civets, a possible source of SARS-CoV found in humans All three S proteins bound to and utilized palm-civet ACE2 efficiently, but the latter two S proteins utilized human ACE2 markedly less efficiently than did the S protein obtained during the earlier human outbreak The lower affinity of these S proteins could be complemented by altering specific residues within the S-protein-binding site of human ACE2 to those of civet ACE2, or by altering S-protein residues 479 and 487 to residues conserved during the 2002-2003 outbreak Collectively, these data describe molecular interactions important to the adaptation of SARS-CoV to human cells, and provide insight into the severity of the 2002-2003 SARS epidemic

903 citations


Journal ArticleDOI
TL;DR: The results indicate that TRB3 is a novel target of CHOP/ATF4 and downregulates its own induction by repression of CHop/atF4 functions, and that it is involved in CHOP‐dependent cell death during ER stress.
Abstract: C/EBP homologous protein (CHOP) is a stress-inducible nuclear protein that is crucial for the development of programmed cell death and regeneration; however, the regulation of its function has not been well characterized. Slbo, a Drosophila homolog of C/EBP (CCAAT/enhancer binding protein), was shown to be unstabilized by tribbles. Here, we identified TRB3 as a tribbles ortholog in humans, which associated with CHOP to suppress the CHOP-dependent transactivation. TRB3 is induced by various forms endoplasmic reticulum (ER) stress later than CHOP. Tunicamycin treatment enhanced the TRB3 promoter activity, while dominant-negative forms of CHOP suppressed the tunicamycin-induced activation. In addition, the tunicamycin response region in the TRB3 promoter contains amino-acid response elements overlapping the CHOP-binding site, and CHOP and ATF4 cooperated to activate this promoter activity. Knockdown of endogenous ATF4 or CHOP expression dramatically repressed tunicamycin-induced TRB3 induction. Furthermore, knockdown of TRB3 expression decreased ER stress-dependent cell death. These results indicate that TRB3 is a novel target of CHOP/ATF4 and downregulates its own induction by repression of CHOP/ATF4 functions, and that it is involved in CHOP-dependent cell death during ER stress.

878 citations


Journal ArticleDOI
TL;DR: A simple mechanism for the xanthophyll‐related, slow component of nonphotochemical quenching in LHC‐II is proposed, by which excess energy is transferred to a zeaxanthin replacing violAXanthin in its binding site, and dissipated as heat.
Abstract: The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a–lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching.

758 citations


Journal ArticleDOI
TL;DR: This review focuses on the generation of and defence against protein carbonyls and speculates on the potential role of carbonylation in protein quality control, cellular deterioration, and senescence.
Abstract: Proteins can become modified by a large number of reactions involving reactive oxygen species. Among these reactions, carbonylation has attracted a great deal of attention due to its irreversible and unrepairable nature. Carbonylated proteins are marked for proteolysis by the proteasome and the Lon protease but can escape degradation and form high-molecular-weight aggregates that accumulate with age. Such carbonylated aggregates can become cytotoxic and have been associated with a large number of age-related disorders, including Parkinson's disease, Alzheimer's disease, and cancer. This review focuses on the generation of and defence against protein carbonyls and speculates on the potential role of carbonylation in protein quality control, cellular deterioration, and senescence.

733 citations


Journal ArticleDOI
TL;DR: It is demonstrated that cells cultured under hypoxic/anoxic conditions and transformed cells in hypoxic areas of tumors activate a translational control program known as the integrated stress response (ISR), which adapts cells to endoplasmic reticulum (ER) stress and suggests that this pathway is an attractive target for antitumor modalities.
Abstract: Tumor cell adaptation to hypoxic stress is an important determinant of malignant progression. While much emphasis has been placed on the role of HIF-1 in this context, the role of additional mechanisms has not been adequately explored. Here we demonstrate that cells cultured under hypoxic/anoxic conditions and transformed cells in hypoxic areas of tumors activate a translational control program known as the integrated stress response (ISR), which adapts cells to endoplasmic reticulum (ER) stress. Inactivation of ISR signaling by mutations in the ER kinase PERK and the translation initiation factor eIF2α or by a dominant-negative PERK impairs cell survival under extreme hypoxia. Tumors derived from these mutant cell lines are smaller and exhibit higher levels of apoptosis in hypoxic areas compared to tumors with an intact ISR. Moreover, expression of the ISR targets ATF4 and CHOP was noted in hypoxic areas of human tumor biopsy samples. Collectively, these findings demonstrate that activation of the ISR is required for tumor cell adaptation to hypoxia, and suggest that this pathway is an attractive target for antitumor modalities.

731 citations


Journal ArticleDOI
TL;DR: This work highlights several recent examples on how Ub regulates signaling and how signaling regulates ubiquitylation during physiological and pathological cellular processes.
Abstract: Ubiquitylation is an emerging mechanism implicated in a variety of nonproteolytic cellular functions. The attachment of a single ubiquitin (Ub) or poly-Ub (lysine 63) chains to proteins control gene transcription, DNA repair and replication, intracellular trafficking and virus budding. In these processes, protein ubiquitylation exhibits inducibility, reversibility and recognition by specialized domains, features similar to protein phosphorylation, which enable Ub to act as a signaling device. Here, we highlight several recent examples on how Ub regulates signaling and how signaling regulates ubiquitylation during physiological and pathological cellular processes.

721 citations


Journal ArticleDOI
TL;DR: It is shown that NGF, acting on the TrkA receptor, activates a signalling pathway in which PI3 kinase plays a crucial early role, with Src kinase as the downstream element which binds to and phosphorylates TRPV1.
Abstract: Nociceptors, or pain-sensitive receptors, are unique among sensory receptors in that their sensitivity is increased by noxious stimulation. This process, called sensitization or hyperalgesia, is mediated by a variety of proinflammatory factors, including bradykinin, ATP and NGF, which cause sensitization to noxious heat stimuli by enhancing the membrane current carried by the heat- and capsaicin-gated ion channel, TRPV1. Several different mechanisms for sensitization of TRPV1 have been proposed. Here we show that NGF, acting on the TrkA receptor, activates a signalling pathway in which PI3 kinase plays a crucial early role, with Src kinase as the downstream element which binds to and phosphorylates TRPV1. Phosphorylation of TRPV1 at a single tyrosine residue, Y200, followed by insertion of TRPV1 channels into the surface membrane, explains most of the rapid sensitizing actions of NGF.

693 citations


Journal ArticleDOI
TL;DR: A profile of repressive histone lysine methylation states for the repetitive complement of four distinct mouse epigenomes is defined and tandem repeats and dsRNA are suggested as primary triggers for more stable chromatin imprints.
Abstract: Histone lysine methylation has been shown to index silenced chromatin regions at, for example, pericentric heterochromatin or of the inactive X chromosome Here, we examined the distribution of repressive histone lysine methylation states over the entire family of DNA repeats in the mouse genome Using chromatin immunoprecipitation in a cluster analysis representing repetitive elements, our data demonstrate the selective enrichment of distinct H3-K9, H3-K27 and H4-K20 methylation marks across tandem repeats (eg major and minor satellites), DNA transposons, retrotransposons, long interspersed nucleotide elements and short interspersed nucleotide elements Tandem repeats, but not the other repetitive elements, give rise to double-stranded (ds) RNAs that are further elevated in embryonic stem (ES) cells lacking the H3-K9-specific Suv39h histone methyltransferases Importantly, although H3-K9 tri- and H4-K20 trimethylation appear stable at the satellite repeats, many of the other repeat-associated repressive marks vary in chromatin of differentiated ES cells or of embryonic trophoblasts and fibroblasts Our data define a profile of repressive histone lysine methylation states for the repetitive complement of four distinct mouse epigenomes and suggest tandem repeats and dsRNA as primary triggers for more stable chromatin imprints

669 citations


Journal ArticleDOI
TL;DR: It is shown that human Drosha selectively cleaves RNA hairpins bearing a large terminal loop from the junction of the loop and the adjacent stem to produce the precursor microRNA.
Abstract: A critical step during human microRNA maturation is the processing of the primary microRNA transcript by the nuclear RNaseIII enzyme Drosha to generate the ∼60-nucleotide precursor microRNA hairpin How Drosha recognizes primary RNA substrates and selects its cleavage sites has remained a mystery, especially given that the known targets for Drosha processing show no discernable sequence homology Here, we show that human Drosha selectively cleaves RNA hairpins bearing a large (⩾10 nucleotides) terminal loop From the junction of the loop and the adjacent stem, Drosha then cleaves approximately two helical RNA turns into the stem to produce the precursor microRNA Beyond the precursor microRNA cleavage sites, approximately one helix turn of stem extension is also essential for efficient processing While the sites of Drosha cleavage are determined largely by the distance from the terminal loop, variations in stem structure and sequence around the cleavage site can fine-tune the actual cleavage sites chosen

630 citations


Journal ArticleDOI
TL;DR: Aplysia californica AChBP has been shown to be a structural and functional surrogate of the ligand-binding domain (LBD) of the nicotinic receptor.
Abstract: Upon ligand binding at the subunit interfaces, the extracellular domain of the nicotinic acetylcholine receptor undergoes conformational changes, and agonist binding allosterically triggers opening of the ion channel. The soluble acetylcholine-binding protein (AChBP) from snail has been shown to be a structural and functional surrogate of the ligand-binding domain (LBD) of the receptor. Yet, individual AChBP species display disparate affinities for nicotinic ligands. The crystal structure of AChBP from Aplysia californica in the apo form reveals a more open loop C and distinctive positions for other surface loops, compared with previous structures. Analysis of Aplysia AChBP complexes with nicotinic ligands shows that loop C, which does not significantly change conformation upon binding of the antagonist, methyllycaconitine, further opens to accommodate the peptidic antagonist, α-conotoxin ImI, but wraps around the agonists lobeline and epibatidine. The structures also reveal extended and nonoverlapping interaction surfaces for the two antagonists, outside the binding loci for agonists. This comprehensive set of structures reflects a dynamic template for delineating further conformational changes of the LBD of the nicotinic receptor.

609 citations


Journal ArticleDOI
TL;DR: The data demonstrate a mechanism by which C. albicans shape alone directly contributes to the method by which phagocytes recognize the fungus, and shows that yeast cell wall β‐glucan is largely shielded from Dectin‐1 by outer wall components.
Abstract: The ability of Candida albicans to rapidly and reversibly switch between yeast and filamentous morphologies is crucial to pathogenicity, and it is thought that the filamentous morphology provides some advantage during interaction with the mammalian immune system. Dectin-1 is a receptor that binds β-glucans and is important for macrophage phagocytosis of fungi. The receptor also collaborates with Toll-like receptors for inflammatory activation of phagocytes by fungi. We show that yeast cell wall β-glucan is largely shielded from Dectin-1 by outer wall components. However, the normal mechanisms of yeast budding and cell separation create permanent scars which expose sufficient β-glucan to trigger antimicrobial responses through Dectin-1, including phagocytosis and activation of reactive oxygen production. During filamentous growth, no cell separation or subsequent β-glucan exposure occurs, and the pathogen fails to activate Dectin-1. The data demonstrate a mechanism by which C. albicans shape alone directly contributes to the method by which phagocytes recognize the fungus.

Journal ArticleDOI
TL;DR: The function of Ser21/Ser9 phosphorylation in several processes in which GSK3 inactivation has previously been implicated is established, as judged by the stabilisation of β‐catenin and stimulation of Wnt‐dependent transcription.
Abstract: The inactivation of glycogen synthase kinase (GSK)3 has been proposed to play important roles in insulin and Wnt signalling. To define the role that inactivation of GSK3 plays, we generated homozygous knockin mice in which the protein kinase B phosphorylation sites on GSK3α (Ser21) and GSK3β (Ser9) were changed to Ala. The knockin mice were viable and were not diabetic. Using these mice we show that inactivation of GSK3β rather than GSK3α is the major route by which insulin activates muscle glycogen synthase. In contrast, we demonstrate that the activation of muscle glycogen synthase by contraction, the stimulation of muscle glucose uptake by insulin, or the activation of hepatic glycogen synthase by glucose do not require GSK3 phosphorylation on Ser21/Ser9. GSK3 also becomes inhibited in the Wnt-signalling pathway, by a poorly defined mechanism. In GSK3α/GSK3β homozygous knockin cells, Wnt3a induces normal inactivation of GSK3, as judged by the stabilisation of β-catenin and stimulation of Wnt-dependent transcription. These results establish the function of Ser21/Ser9 phosphorylation in several processes in which GSK3 inactivation has previously been implicated.

Journal ArticleDOI
TL;DR: This work identifies for the first time the vacuole as an essential compartment for Fe storage in seeds and indicates that mobilization of vacuolar Fe stores by AtNRAMP3 and AtNRamp4 is crucial to support Arabidopsis early development until efficient systems for Fe acquisition from the soil take over.
Abstract: Iron (Fe) is necessary for all living cells, but its bioavailability is often limited. Fe deficiency limits agriculture in many areas and affects over a billion human beings worldwide. In mammals, NRAMP2/DMT1/DCT1 was identified as a major pathway for Fe acquisition and recycling. In plants, AtNRAMP3 and AtNRAMP4 are induced under Fe deficiency. The similitude of AtNRAMP3 and AtNRAMP4 expression patterns and their common targeting to the vacuole, together with the lack of obvious phenotype in nramp3-1 and nramp4-1 single knockout mutants, suggested a functional redundancy. Indeed, the germination of nramp3 nramp4 double mutants is arrested under low Fe nutrition and fully rescued by high Fe supply. Mutant seeds have wild type Fe content, but fail to retrieve Fe from the vacuolar globoids. Our work thus identifies for the first time the vacuole as an essential compartment for Fe storage in seeds. Our data indicate that mobilization of vacuolar Fe stores by AtNRAMP3 and AtNRAMP4 is crucial to support Arabidopsis early development until efficient systems for Fe acquisition from the soil take over.

Journal ArticleDOI
TL;DR: These studies establish the importance of LKB1 in regulating AMPK activity and cellular energy levels in response to contraction and phenformin and reduce phosphorylation and activation of AMPKα2.
Abstract: Recent studies indicate that the LKB1 tumour suppressor protein kinase is the major 9upstream9 activator of the energy sensor AMP‐activated protein kinase (AMPK). We have used mice in which LKB1 is expressed at only ∼10% of the normal levels in muscle and most other tissues, or that lack LKB1 entirely in skeletal muscle. Muscle expressing only 10% of the normal level of LKB1 had significantly reduced phosphorylation and activation of AMPKα2. In LKB1‐lacking muscle, the basal activity of the AMPKα2 isoform was greatly reduced and was not increased by the AMP‐mimetic agent, 5‐aminoimidazole‐4‐carboxamide riboside (AICAR), by the antidiabetic drug phenformin, or by muscle contraction. Moreover, phosphorylation of acetyl CoA carboxylase‐2, a downstream target of AMPK, was profoundly reduced. Glucose uptake stimulated by AICAR or muscle contraction, but not by insulin, was inhibited in the absence of LKB1. Contraction increased the AMP:ATP ratio to a greater extent in LKB1‐deficient muscles than in LKB1‐expressing muscles. These studies establish the importance of LKB1 in regulating AMPK activity and cellular energy levels in response to contraction and phenformin.

Journal ArticleDOI
TL;DR: The results identify PACS‐2 as a novel sorting protein that links the ER–mitochondria axis to ER homeostasis and the control of cell fate, and provide new insights into Bid action.
Abstract: The endoplasmic reticulum (ER) and mitochondria form contacts that support communication between these two organelles, including synthesis and transfer of lipids, and the exchange of calcium, which regulates ER chaperones, mitochondrial ATP production, and apoptosis. Despite the fundamental roles for ER–mitochondria contacts, little is known about the molecules that regulate them. Here we report the identification of a multifunctional sorting protein, PACS-2, that integrates ER–mitochondria communication, ER homeostasis, and apoptosis. PACS-2 controls the apposition of mitochondria with the ER, as depletion of PACS-2 causes BAP31-dependent mitochondria fragmentation and uncoupling from the ER. PACS-2 also controls formation of ER lipid-synthesizing centers found on mitochondria-associated membranes and ER homeostasis. However, in response to apoptotic inducers, PACS-2 translocates Bid to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated Bid, the release of cytochrome c, and the activation of caspase-3, thereby causing cell death. Together, our results identify PACS-2 as a novel sorting protein that links the ER–mitochondria axis to ER homeostasis and the control of cell fate, and provide new insights into Bid action.

Journal ArticleDOI
TL;DR: In this article, the authors studied membrane tube pulling in ternary mixtures of sphingomyelin, phosphatidylcholine and cholesterol and found that the lipid composition is significantly different in the tubes and in the vesicles.
Abstract: We have recently developed a minimal system for generating long tubular nanostructures that resemble tubes observed in vivo with biological membranes. Here, we studied membrane tube pulling in ternary mixtures of sphingomyelin, phosphatidylcholine and cholesterol. Two salient results emerged: the lipid composition is significantly different in the tubes and in the vesicles; tube fission is observed when phase separation is generated in the tubes. This shows that lipid sorting may depend critically on both membrane curvature and phase separation. Phase separation also appears to be important for membrane fission in tubes pulled out of giant liposomes or purified Golgi membranes.

Journal ArticleDOI
TL;DR: It is demonstrated here that neuronal cadherin (N‐cadherin) is cleaved specifically by the disintegrin and metalloproteinase ADAM10 in its ectodomain, leading to the conclusion that this protease constitutes a central switch in the signalling pathway from N‐cADherin at the cell surface to β‐catenin/LEF‐1‐regulated gene expression in the nucleus.
Abstract: Cadherins are critically involved in tissue development and tissue homeostasis. We demonstrate here that neuronal cadherin (N-cadherin) is cleaved specifically by the disintegrin and metalloproteinase ADAM10 in its ectodomain. ADAM10 is not only responsible for the constitutive, but also for the regulated, shedding of this adhesion molecule in fibroblasts and neuronal cells directly regulating the overall levels of N-cadherin expression at the cell surface. The ADAM10-induced N-cadherin cleavage resulted in changes in the adhesive behaviour of cells and also in a dramatic redistribution of β-catenin from the cell surface to the cytoplasmic pool, thereby influencing the expression of β-catenin target genes. Our data therefore demonstrate a crucial role of ADAM10 in the regulation of cell–cell adhesion and on β-catenin signalling, leading to the conclusion that this protease constitutes a central switch in the signalling pathway from N-cadherin at the cell surface to β-catenin/LEF-1-regulated gene expression in the nucleus.

Journal ArticleDOI
TL;DR: The cellular lipidome comprises over 1000 different lipids as discussed by the authors, and the functionality of lipids is determined by their local concentration, which varies between organelles, between the two leaflets of the lipid bilayer and even within the lateral plane of the membrane.
Abstract: The cellular lipidome comprises over 1000 different lipids. Most lipids look similar having a polar head and hydrophobic tails. Still, cells recognize lipids with exquisite specificity. The functionality of lipids is determined by their local concentration, which varies between organelles, between the two leaflets of the lipid bilayer and even within the lateral plane of the membrane. To incorporate function, cellular lipidomics must not only determine which lipids are present but also the concentration of each lipid at each specific intracellular location in time and the lipid's interaction partners. Moreover, cellular lipidomics must include the enzymes of lipid metabolism and transport, their specificity, localization and regulation. Finally, it requires a thorough understanding of the physical properties of lipids and membranes, especially lipid–lipid and lipid–protein interactions. In the context of a cell, the complex relationships between metabolites can only be understood by viewing them as an integrated system. Cellular lipidomics provides a framework for understanding and manipulating the vital role of lipids, especially in membrane transport and sorting and in cell signaling.

Journal ArticleDOI
TL;DR: Yeast two‐hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33, and may contribute to MPK4‐regulated defense activation by coupling the kinase to specific WR KY transcription factors.
Abstract: Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors.

Journal ArticleDOI
TL;DR: It is shown that lysyl‐oxidase‐like 2 and 3 (LOXL2 and LOXL3) interact and cooperate with Snail to downregulate E‐cadherin expression, establishing a direct link between LO XL2 and Snail in carcinoma progression.
Abstract: The transcription factor Snail controls epithelial–mesenchymal transitions (EMT) by repressing E-cadherin expression and other epithelial genes. However, the mechanisms involved in the regulation of Snail function are not fully understood. Here we show that lysyl-oxidase-like 2 and 3 (LOXL2 and LOXL3), two members of the lysyl-oxidase gene family, interact and cooperate with Snail to downregulate E-cadherin expression. Snail's lysine residues 98 and 137 are essential for Snail stability, functional cooperation with LOXL2/3 and induction of EMT. Overexpression of LOXL2 or LOXL3 in epithelial cells induces an EMT process, supporting their implication in tumor progression. The biological importance of LOXL2 is further supported by RNA interference of LOXL2 in Snail-expressing metastatic carcinoma cells, which led to a strong decrease of tumor growth associated to increased apoptosis and reduced expression of mesenchymal and invasive/angiogenic markers. Taken together, these results establish a direct link between LOXL2 and Snail in carcinoma progression.

Journal ArticleDOI
TL;DR: The results provide direct evidence linking CaV3.2 T‐type channels to pain perception and suggest that CaV 3.2 may offer a specific molecular target for the treatment of pain.
Abstract: Analgesic therapies are still limited and sometimes poorly effective, therefore finding new targets for the development of innovative drugs is urgently needed. In order to validate the potential utility of blocking T-type calcium channels to reduce nociception, we explored the effects of intrathecally administered oligodeoxynucleotide antisenses, specific to the recently identified T-type calcium channel family (CaV3.1, CaV3.2, and CaV3.3), on reactions to noxious stimuli in healthy and mononeuropathic rats. Our results demonstrate that the antisense targeting CaV3.2 induced a knockdown of the CaV3.2 mRNA and protein expression as well as a large reduction of 'CaV3.2-like' T-type currents in nociceptive dorsal root ganglion neurons. Concomitantly, the antisense treatment resulted in major antinociceptive, anti-hyperalgesic, and anti-allodynic effects, suggesting that CaV3.2 plays a major pronociceptive role in acute and chronic pain states. Taken together, the results provide direct evidence linking CaV3.2 T-type channels to pain perception and suggest that CaV3.2 may offer a specific molecular target for the treatment of pain.


Journal ArticleDOI
TL;DR: The data identify a new mechanism by which Myc can silence gene expression not only by passive functional interference but also by active recruitment of corepressor proteins, suggesting that targeting of DNA methyltransferases by transcription factors is a wide and general mechanism for the generation of specific DNA methylation patterns within a cell.
Abstract: The Myc transcription factor is an essential mediator of cell growth and proliferation through its ability to both positively and negatively regulate transcription. The mechanisms by which Myc silences gene expression are not well understood. The current model is that Myc represses transcription through functional interference with transcriptional activators. Here we show that Myc binds the corepressor Dnmt3a and associates with DNA methyltransferase activity in vivo. In cells with reduced Dnmt3a levels, we observe specific reactivation of the Myc-repressed p21Cip1 gene, whereas the expression of Myc-activated E-boxes genes is unchanged. In addition, we find that Myc can target Dnmt3a selectively to the promoter of p21Cip1. Myc is known to be recruited to the p21Cip1 promoter by the DNA-binding factor Miz-1. Consistent with this, we observe that Myc and Dnmt3a form a ternary complex with Miz-1 and that this complex can corepress the p21Cip1 promoter. Finally, we show that DNA methylation is required for Myc-mediated repression of p21Cip1. Our data identify a new mechanism by which Myc can silence gene expression not only by passive functional interference but also by active recruitment of corepressor proteins. Furthermore, these findings suggest that targeting of DNA methyltransferases by transcription factors is a wide and general mechanism for the generation of specific DNA methylation patterns within a cell.

Journal ArticleDOI
TL;DR: Surprisingly, the results indicate that E‐cadherin is specifically required for tight junction, but not desmosome, formation and this appears to involve signalling rather than cell contact formation.
Abstract: Cadherin adhesion molecules are key determinants of morphogenesis and tissue architecture. Nevertheless, the molecular mechanisms responsible for the morphogenetic contributions of cadherins remain poorly understood in vivo. Besides supporting cell–cell adhesion, cadherins can affect a wide range of cellular functions that include activation of cell signalling pathways, regulation of the cytoskeleton and control of cell polarity. To determine the role of E-cadherin in stratified epithelium of the epidermis, we have conditionally inactivated its gene in mice. Here we show that loss of E-cadherin in the epidermis in vivo results in perinatal death of mice due to the inability to retain a functional epidermal water barrier. Absence of E-cadherin leads to improper localization of key tight junctional proteins, resulting in permeable tight junctions and thus altered epidermal resistance. In addition, both Rac and activated atypical PKC, crucial for tight junction formation, are mislocalized. Surprisingly, our results indicate that E-cadherin is specifically required for tight junction, but not desmosome, formation and this appears to involve signalling rather than cell contact formation.

Journal ArticleDOI
TL;DR: It is proposed that XBP‐1 is both necessary and sufficient for the full biogenesis of the secretory machinery in exocrine cells.
Abstract: The secretory function of cells relies on the capacity of the endoplasmic reticulum (ER) to fold and modify nascent polypeptides and to synthesize phospholipids for the subsequent trafficking of secretory proteins through the ER–Golgi network. We have previously demonstrated that the transcription factor XBP-1 activates the expression of certain ER chaperone genes and initiates ER biogenesis. Here, we have rescued the embryonic lethality of XBP-1 deficient fetuses by targeting an XBP-1 transgene selectively to hepatocytes (XBP-1−/−;LivXBP1). XBP-1−/−;LivXBP1 mice displayed abnormalities exclusively in secretory organs such as exocrine pancreas and salivary gland that led to early postnatal lethality from impaired production of pancreatic digestive enzymes. The ER was poorly developed in pancreatic and salivary gland acinar cells, accompanied by decreased expression of ER chaperone genes. Marked apoptosis of pancreatic acinar cells was observed during embryogenesis. Thus, the absence of XBP-1 results in an imbalance between the cargo load on the ER and its capacity to handle it, leading to the activation of ER stress-mediated proapoptotic pathways. These data lead us to propose that XBP-1 is both necessary and sufficient for the full biogenesis of the secretory machinery in exocrine cells.

Journal ArticleDOI
TL;DR: The crystal structures of the 45‐kDa catalytic domain of USP14 in isolation and in a complex with ubiquitin aldehyde are reported, which reveal distinct structural features and identify important regulatory mechanisms for USP 14.
Abstract: The ubiquitin-specific processing protease (UBP) family of deubiquitinating enzymes plays an essential role in numerous cellular processes. Mammalian USP14 (Ubp6 in yeast) is unique among known UBP enzymes in that it is activated catalytically upon specific association with the 26S proteasome. Here, we report the crystal structures of the 45-kDa catalytic domain of USP14 in isolation and in a complex with ubiquitin aldehyde, which reveal distinct structural features. In the absence of ubiquitin binding, the catalytic cleft leading to the active site of USP14 is blocked by two surface loops. Binding by ubiquitin induces a significant conformational change that translocates the two surface loops thereby allowing access of the ubiquitin C-terminus to the active site. These structural observations, in conjunction with biochemical characterization, identify important regulatory mechanisms for USP14.

Journal ArticleDOI
TL;DR: It is shown that the BIR2 domain contributes substantially to inhibition of executioner caspases, and it is predicted that the origin of the death stimulus should dictate the efficiency of inhibition by XIAP.
Abstract: The X-linked inhibitor of apoptosis protein (XIAP) uses its second baculovirus IAP repeat domain (BIR2) to inhibit the apoptotic executioner caspase-3 and -7. Structural studies have demonstrated that it is not the BIR2 domain itself but a segment N-terminal to it that directly targets the activity of these caspases. These studies failed to demonstrate a role of the BIR2 domain in inhibition. We used site-directed mutagenesis of BIR2 and its linker to determine the mechanism of executioner caspase inhibition by XIAP. We show that the BIR2 domain contributes substantially to inhibition of executioner caspases. A surface groove on BIR2, which also binds to Smac/DIABLO, interacts with a neoepitope generated at the N-terminus of the caspase small subunit following activation. Therefore, BIR2 uses a two-site interaction mechanism to achieve high specificity and potency for inhibition. Moreover, for caspase-7, the precise location of the activating cleavage is critical for subsequent inhibition. Since apical caspases utilize this cleavage site differently, we predict that the origin of the death stimulus should dictate the efficiency of inhibition by XIAP.

Journal ArticleDOI
TL;DR: The results suggest that unlike most pore‐forming proteins, Bax membrane permeabilization results from oligomerization of transmembrane monomers rather than concerted insertion of the pore domains of a preformed oligomer.
Abstract: Bax promotes cell death by permeabilizing mitochondrial outer membranes by an unresolved mechanism. However, in cells lacking the gene c-myc, membrane permeabilization by Bax is blocked by changes in the mitochondria that prevent Bax oligomerization. Drug-treated c-myc null cells and cells expressing Myc were used to map the topology of Bax in membranes prior to and after mitochondrial permeabilization. Chemical labeling of single cysteine mutants of Bax using a membrane bilayer impermeant cysteine-specific modifying agent revealed that Bax inserted both the 'pore domain' (helices alpha5-alpha6), and the tail-anchor (helix alpha9) into membranes prior to oligomerization and membrane permeabilization. Additional topology changes for Bax were not required in Myc-expressing cells to promote oligomerization and cytochrome c release. Our results suggest that unlike most pore-forming proteins, Bax membrane permeabilization results from oligomerization of transmembrane monomers rather than concerted insertion of the pore domains of a preformed oligomer.

Journal ArticleDOI
TL;DR: It is shown that Smp2, the yeast homologue of mammalian lipin, is a key regulator of nuclear membrane growth during the cell cycle and associates with the promoters of phospholipid biosynthetic enzymes in a Nem1–Spo7‐dependent manner.
Abstract: Remodelling of the nuclear membrane is essential for the dynamic changes of nuclear architecture at different stages of the cell cycle and during cell differentiation. The molecular mechanism underlying the regulation of nuclear membrane biogenesis is not known. Here we show that Smp2, the yeast homologue of mammalian lipin, is a key regulator of nuclear membrane growth during the cell cycle. Smp2 is phosphorylated by Cdc28/Cdk1 and dephosphorylated by a nuclear/endoplasmic reticulum (ER) membrane–localized CPD phosphatase complex consisting of Nem1 and Spo7. Loss of either SMP2 or its dephosphorylated form causes transcriptional upregulation of key enzymes involved in lipid biosynthesis concurrent with a massive expansion of the nucleus. Conversely, constitutive dephosphorylation of Smp2 inhibits cell division. We show that Smp2 associates with the promoters of phospholipid biosynthetic enzymes in a Nem1–Spo7-dependent manner. Our data suggest that Smp2 is a critical factor in coordinating phospholipid biosynthesis at the nuclear/ER membrane with nuclear growth during the cell cycle.

Journal ArticleDOI
TL;DR: It is shown that stabilization of BDL/IAA12 or its sister protein IAA13 prevents MP/ARF5‐dependent embryonic root formation whereas stabilized SHY2/ IAA3 interferes with seedling growth.
Abstract: The plant hormone auxin elicits many specific context-dependent developmental responses. Auxin promotes degradation of Aux/IAA proteins that prevent transcription factors of the auxin response factor (ARF) family from regulating auxin-responsive target genes. Aux/IAAs and ARFs are represented by large gene families in Arabidopsis. Here we show that stabilization of BDL/IAA12 or its sister protein IAA13 prevents MP/ARF5-dependent embryonic root formation whereas stabilized SHY2/IAA3 interferes with seedling growth. Although both bdl and shy2-2 proteins inhibited MP/ARF5-dependent reporter gene activation, shy2-2 was much less efficient than bdl to interfere with embryonic root initiation when expressed from the BDL promoter. Similarly, MP was much more efficient than ARF16 in this process. When expressed from the SHY2 promoter, both shy2-2 and bdl inhibited cell elongation and auxin-induced gene expression in the seedling hypocotyl. By contrast, gravitropism and auxin-induced gene expression in the root, which were promoted by functionally redundant NPH4/ARF7 and ARF19 proteins, were inhibited by shy2-2, but not by bdl protein. Our results suggest that auxin signals are converted into specific responses by matching pairs of coexpressed ARF and Aux/IAA proteins.