scispace - formally typeset
Search or ask a question

Showing papers in "The FASEB Journal in 2002"


Journal ArticleDOI
TL;DR: It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide, and this positioning will open an exciting field‐H2S physiology‐encompassing realization of the interaction of H1N1 and other gasOTransmitters, sulfurating modification of proteins, and the functional role of H2Sin multiple systems.
Abstract: Bearing the public image of a deadly "gas of rotten eggs," hydrogen sulfide (H2S) can be generated in many types of mammalian cells. Functionally, H2S has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation. By acting specifically on KATP channels, H2S can hyperpolarize cell membranes, relax smooth muscle cells, or decrease neuronal excitability. The endogenous metabolism and physiological functions of H2S position this gas well in the novel family of endogenous gaseous transmitters, termed "gasotransmitters." It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide. This positioning of H2S will open an exciting field-H2S physiology-encompassing realization of the interaction of H2S and other gasotransmitters, sulfurating modification of proteins, and the functional role of H2S in multiple systems. It may shed light on the pathogenesis of many diseases related to the abnormal metabolism of H2S.

1,675 citations


Journal ArticleDOI
TL;DR: This review aims to summarize the current knowledge of oxygen‐regulated gene expression, which includes the finding that HIF‐1 regulates the expression of many more genes apart from erythropoietin, and the elucidation of the oxygen‐dependent mechanisms degrading the HIF a subunits.
Abstract: Although it was known for a long time that oxygen deprivation leads to the transcriptional induction of the gene encoding erythropoietin, the molecular mechanisms behind this process remained enigmatic. The cloning of the hypoxia-inducible factors (HIFs), the finding that HIF-1 regulates the expression of many more genes apart from erythropoietin, and the elucidation of the oxygen-dependent mechanisms degrading the HIF alpha subunits recently led to the spectacular discovery of the molecular principles of oxygen sensing. This review aims to summarize our current knowledge of oxygen-regulated gene expression..

1,181 citations


Journal ArticleDOI
TL;DR: The mechanism of rapid escape is by selective reversal of the surface charge of NPs (from anionic to cationic) in the acidic endolysosomal compartment, which causes the NPs to interact with the endo‐lysosomal membrane and escape into the cytosol.
Abstract: The endo-lysosomal escape of drug carriers is crucial to enhancing the efficacy of their macromolecular payload, especially the payloads that are susceptible to lysosomal degradation. Current vectors that enable the endo-lysosomal escape of macromolecules such as DNA are limited by their toxicity and by their ability to carry only limited classes of therapeutic agents. In this paper, we report the rapid (<10 min) endo-lysosomal escape of biodegradable nanoparticles (NPs) formulated from the copolymers of poly(DL-lactide-co-glycolide) (PLGA). The mechanism of rapid escape is by selective reversal of the surface charge of NPs (from anionic to cationic) in the acidic endo-lysosomal compartment, which causes the NPs to interact with the endo-lysosomal membrane and escape into the cytosol. PLGA NPs are able to deliver a variety of therapeutic agents, including macromolecules such as DNA and low molecular weight drugs such as dexamethasone, intracellularly at a slow rate, which results in a sustained therapeutic effect. PLGA has a number of advantages over other polymers used in drug and gene delivery including biodegradability, biocompatibility, and approval for human use granted by the U.S. Food and Drug Administration. Hence PLGA is well suited for sustained intracellular delivery of macromolecules.

1,031 citations


Journal ArticleDOI
TL;DR: The π‐stacking hypothesis suggests a new approach to understanding the self‐assembly mechanism that governs amyloid formation and indicates possible ways to control this process.
Abstract: Amyloid fibril formation is assumed to be the molecular basis for a variety of diseases of unrelated origin. Despite its fundamental clinical importance, the mechanism of amyloid formation is not fully understood. When we analyzed a variety of short functional fragments from unrelated amyloid-forming proteins, a remarkable occurrence of aromatic residues was observed. The finding of aromatic residues in diverse fragments raises the possibility that pi-pi interactions may play a significant role in the molecular recognition and self-assembly processes that lead to amyloid formation. This is in line with the well-known central role of pi-stacking interactions in self-assembly processes in the fields of chemistry and biochemistry. We speculate that the stacking interactions may provide energetic contribution as well as order and directionality in the self-assembly of amyloid structures. Experimental data regarding amyloid formation and inhibition by short peptide analogs also support our hypothesis. The pi-stacking hypothesis suggests a new approach to understanding the self-assembly mechanism that governs amyloid formation and indicates possible ways to control this process.

1,022 citations


Journal ArticleDOI
TL;DR: It is suggested that increases in PGC‐1, NRF‐ 1, andNRF‐2 represent key regulatory components of the stimulation of mitochondrial biogenesis by exercise and that P GC‐1 mediates the coordinated increases in GLUT4 and mitochondria.
Abstract: Endurance exercise induces increases in mitochondria and the GLUT4 isoform of the glucose transporter in muscle. Although little is known about the mechanisms underlying these adaptations, new information has accumulated regarding how mitochondrial biogenesis and GLUT4 expression are regulated. This includes the findings that the transcriptional coactivator PGC-1 promotes mitochondrial biogenesis and that NRF-1 and NRF-2 act as transcriptional activators of genes encoding mitochondrial enzymes. We tested the hypothesis that increases in PGC-1, NRF-1, and NRF-2 are involved in the initial adaptive response of muscle to exercise. Five daily bouts of swimming induced increases in mitochondrial enzymes and GLUT4 in skeletal muscle in rats. One exercise bout resulted in approximately twofold increases in full-length muscle PGC-1 mRNA and PGC-1 protein, which were evident 18 h after exercise. A smaller form of PGC-1 increased after exercise. The exercise induced increases in muscle NRF-1 and NRF-2 that were evident 12 to 18 h after one exercise bout. These findings suggest that increases in PGC-1, NRF-1, and NRF-2 represent key regulatory components of the stimulation of mitochondrial biogenesis by exercise and that PGC-1 mediates the coordinated increases in GLUT4 and mitochondria.

988 citations


Journal ArticleDOI
TL;DR: It appears that intramuscular IL‐6 is stimulated by complex signaling cascades initiated by both calcium (Ca2+) ‐dependent and ‐independent stimuli, and it also seems likely that skeletal muscle produces IL‐ 6 to aid in maintaining metabolic homeostasis during periods of altered metabolic demand such as muscular exercise or insulin stimulation.
Abstract: It has recently been demonstrated that the marked increase in the systemic concentration of cytokine interleukin-6 (IL-6) seen with exercise originates from the contracting limb and that skeletal muscle cells per se are the likely source of the production. This review summarizes the possible mechanisms for activation and biological consequences of muscle-derived IL-6. It appears that intramuscular IL-6 is stimulated by complex signaling cascades initiated by both calcium (Ca2+) -dependent and -independent stimuli. It also seems likely that skeletal muscle produces IL-6 to aid in maintaining metabolic homeostasis during periods of altered metabolic demand such as muscular exercise or insulin stimulation. It may do so via local and/or systemic effects. This review also explores the efficacy that IL-6 may be used as a therapeutic drug in treating metabolic disorders such as obesity, type 2 diabetes, and atherosclerosis.—Febbraio, M. A., Pedersen, B. K. Muscle-derived interleukin 6: mechanisms for activation ...

868 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the widely used HEK293 cells have an unexpected relationship to neurons, a finding that may require reinterpretation of many previous studies in which it was assumed that HEK 293 cells resembled more typical kidney epithelial cells.
Abstract: The 293 cell line was derived by transformation of primary cultures of human embryonic kidney (HEK) cells with sheared adenovirus (Ad)5 DNA. A combination of immunostaining, immunoblot, and microarray analysis showed that 293 cells express the neurofilament (NF) subunits NF-L, NF-M, NF-H, and a-internexin as well as many other proteins typically found in neurons. Three other independently derived HEK lines, two transformed by Ad5 and one by Ad12, also expressed NFs, as did one human embryonic retinal cell line transformed with Ad5. Two rodent kidney lines transformed with Ad12 were also found to express NF proteins, although several rodent kidney cell lines transformed by Ad5 DNA and three HEK cell lines transformed by the SV40 early region did not express NFs. These results suggest that human Ads preferentially transform human neuronal lineage cells. We also demonstrate that the widely used HEK293 cells have an unexpected relationship to neurons, a finding that may require reinterpretation of many previous studies in which it was assumed that HEK293 cells resembled more typical kidney epithelial cells.

790 citations


Journal ArticleDOI
TL;DR: 2‐Aminoethoxydiphenyl borate is a reliable blocker of store‐operated Ca2+ entry but an inconsistent inhibitor of InsP3‐induced Ca 2+ release.
Abstract: Since its introduction to Ca2+ signaling in 1997, 2-aminoethoxydiphenyl borate (2-APB) has been used in many studies to probe for the involvement of inositol 1,4,5-trisphosphate receptors in the generation of Ca2+ signals. Due to reports of some nonspecific actions of 2-APB, and the fact that its principal antagonistic effect is on Ca2+ entry rather than Ca2+ release, this compound may not have the utility first suggested. However, 2-APB has thrown up some interesting results, particularly with respect to store-operated Ca2+ entry in nonexcitable cells. These data indicate that although it must be used with caution, 2-APB can be useful in probing certain aspects of Ca2+ signaling.—Bootman, M. D., Collins, T. J., Mackenzie, L., Roderick, H. L., Berridge, M. J., Peppiatt, C. M. 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release.

714 citations


Journal ArticleDOI
TL;DR: It is demonstrated that mechanical stimulation in vitro, without ligament‐selective exogenous growth and differentiation factors, induces the differentiation of mesenchymal progenitor cells from the bone marrow into a ligament cell lineage in preference to alternative paths.
Abstract: Growth factors, hormones, and other regulatory molecules are traditionally required in tissue engineering studies to direct the differentiation of progenitor cells along specific lineages. We demonstrate that mechanical stimulation in vitro, without ligament-selective exogenous growth and differentiation factors, induces the differentiation of mesenchymal progenitor cells from the bone marrow into a ligament cell lineage in preference to alternative paths (i.e., bone or cartilage cell lineages). A bioreactor was designed to permit the controlled application of ligament-like multidimensional mechanical strains (translational and rotational strain) to the undifferentiated cells embedded in a collagen gel. The application of mechanical stress over a period of 21 days up-regulated ligament fibroblast markers, including collagen types I and III and tenascin-C, fostered statistically significant cell alignment and density and resulted in the formation of oriented collagen fibers, all features characteristic of ligament cells. At the same time, no up-regulation of bone or cartilage-specific cell markers was observed.

673 citations


Journal ArticleDOI
TL;DR: Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells, and suggests a potential new mechanism by which they exert positive and negative effects.
Abstract: Glucocorticoids continue to be the major immunomodulatory agents used in clinical medicine today. However, their actions as anti-inflammatory and immunosuppressive drugs are both beneficial and deleterious. We analyzed the effect of glucocorticoids on the gene expression profile of peripheral blood mononuclear cells from healthy donors. DNA microarray analysis combined with quantitative TaqMan PCR and flow cytometry revealed that glucocorticoids induced the expression of chemokine, cytokine, and complement family members as well as of newly discovered innate immune-related genes, including scavenger and Toll-like receptors. In contrast, glucocorticoids repressed the expression of adaptive immune-related genes. Simultaneous inhibitory and stimulatory effects of glucocorticoids were found on inflammatory T helper subsets and apoptosis-related gene clusters. In cells activated by T cell receptor cross-linking, glucocorticoids down-regulated the expression of specific genes that were previously up-regulated in resting cells, suggesting a potential new mechanism by which they exert positive and negative effects. Considering the broad and continuously renewed interest in glucocorticoid therapy, the profiles we describe here will be useful in designing more specific and efficient treatment strategies.

573 citations


Journal ArticleDOI
TL;DR: A new patho‐physiological animal model is proposed for induction of viral‐related steatosis whereby the core protein of HCV targets microsomal triglyceride transfer protein activity and modifies hepatic VLDL assembly and secretion.
Abstract: Liver steatosis, which involves accumulation of intracytoplasmic lipid droplets, is characteristic of hepatitis C virus (HCV) infection. By use of an in vivo transgenic murine model, we demonstrate that hepatic overexpression of HCV core protein interferes with the hepatic assembly and secretion of triglyceride-rich very low density lipoproteins (VLDL). Core expression led to reduction in microsomal triglyceride transfer protein (MTP) activity and in the particle size of nascent hepatic VLDL without affecting accumulation of MTP and protein disulfide isomerase. Hepatic human apolipoprotein AII (apo AII) expression in double-core/apo AII transgenic mice diminished intrahepatic core protein accumulation and abrogated its effects on VLDL production. Apo AII and HCV core colocalized in human HCV-infected liver biopsies, thus testifying to the relevance of this interaction in productive HCV infection. Our results lead us to propose a new pathophysiological animal model for induction of viral-related steatosis ...

Journal ArticleDOI
TL;DR: Data identify COX‐2 and TNF‐α as operative in the early signature pathologies of diabetic retinopathy, a newly recognized inflammatory disease.
Abstract: Leukocyte adhesion to the diabetic retinal vasculature results in blood-retinal barrier breakdown, capillary nonperfusion, and endothelial cell injury and death. Intercellular adhesion molecule-1 (ICAM-1) and the leukocyte integrin CD18 are required for these processes. Diabetes was induced in Long Evans rats, resulting in a two- to threefold increase in retinal leukocyte adhesion. Following one week of diabetes, neutrophil CD11a, CD11b, and CD18 expression was increased significantly, as were retinal ICAM-1 levels. Animals were treated with aspirin, a cyclooxygenase 2 (COX-2) inhibitor (meloxicam), or a soluble tumor necrosis factor alpha (TNF-alpha) receptor/Fc construct (TNFR-Fc, etanercept). High-dose aspirin, etanercept, and high-dose meloxicam each reduced leukocyte adhesion and suppressed blood-retinal barrier breakdown. High-dose aspirin also reduced the expression of CD11a, CD11b, and CD18, whereas meloxicam and etanercept did not. High-dose aspirin, etanercept, and high-dose meloxicam each reduced retinal ICAM-1 expression. Aspirin and meloxicam both lowered retinal TNF-alpha levels. Notably, aspirin, meloxicam, and etanercept did not change retinal vascular endothelial growth factor levels. High-dose aspirin, etanercept and high-dose meloxicam, each suppressed the retinal expression of eNOS and the DNA-binding capacity of retinal nuclear factor-kappaB. High-dose aspirin also suppressed Erk kinase activity, which is involved in CD18 up-regulation. Taken together, these data identify COX-2 and TNF-alpha as operative in the early signature pathologies of diabetic retinopathy, a newly recognized inflammatory disease.

Journal ArticleDOI
TL;DR: Embryoid bodies generated from stem cells primed with these growth factors demonstrated an increased potential for cardiac differentiation with a significant increase in beating areas and enhanced myofibrillogenesis and in vivo, transplantation of stem cells into heart resulted in cardiac differentiation provided that TGF‐β/BMP2 signaling was intact.
Abstract: Members of the transforming growth factor beta1 (TGF-beta) superfamily--namely, TGF-beta and BMP2--applied to undifferentiated murine embryonic stem cells up-regulated mRNA of mesodermal (Brachyury) and cardiac specific transcription factors (Nkx2.5, MEF2C). Embryoid bodies generated from stem cells primed with these growth factors demonstrated an increased potential for cardiac differentiation with a significant increase in beating areas and enhanced myofibrillogenesis. In an environment of postmitotic cardiomyocytes, stem cells engineered to express a fluorescent protein under the control of a cardiac promoter differentiated into fluorescent ventricular myocytes beating in synchrony with host cells, a process significantly enhanced by TGF-beta or BMP2. In vitro, disruption of the TGF-beta/BMP signaling pathways by latency-associated peptide and/or noggin prevented differentiation of stem cells. In fact, only host cells that secrete a TGF-beta family member induced a cardiac phenotype in stem cells. In vivo, transplantation of stem cells into heart also resulted in cardiac differentiation provided that TGF-beta/BMP2 signaling was intact. In infarcted myocardium, grafted stem cells differentiated into functional cardiomyocytes integrated with surrounding tissue, improving contractile performance. Thus, embryonic stem cells are directed to differentiate into cardiomyocytes by signaling mediated through TGF-beta/BMP2, a cardiac paracrine pathway required for therapeutic benefit of stem cell transplantation in diseased heart.

Journal ArticleDOI
TL;DR: It is shown that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer‐sized extracellular matrix (ECM) islands, and mechanical interactions between cells and ECM that modulate cytoskeletal tension play a key role in the control of directional cell motility.
Abstract: Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.

Journal ArticleDOI
TL;DR: The results indicate that mild increases in glucose induce ROS and Mt swelling that precedes neuronal apoptosis, and glucoseotoxicity is blocked by inhibiting ROS induction, MMD, or caspase cleavage by specific inhibitors of electron transfer, or by stabilizing the ANT.
Abstract: The current study examines the association between glucose induction of reactive oxygen species (ROS), mitochondrial (Mt) depolarization, and programmed cell death in primary neurons. In primary dorsal root ganglion (DRG) neurons, 45 mM glucose rapidly induces a peak rise in ROS corresponding to a 50% increase in mean Mt size at 6 h (P<0.001). This is coupled with loss of regulation of the Mt membrane potential (Mt membrane hyperpolarization, followed by depolarization, MMD), partial depletion of ATP, and activation of caspase-3 and -9. Glucose-induced activation of ROS, MMD, and caspase-3 and -9 activation is inhibited by myxothiazole and thenoyltrifluoroacetone (P<0.001), which inhibit specific components of the Mt electron transfer chain. Similarly, MMD and caspase-3 activation are inhibited by 100 microM bongkrekic acid (an inhibitor of the adenosine nucleotide translocase ANT). These results indicate that mild increases in glucose induce ROS and Mt swelling that precedes neuronal apoptosis. Glucotoxicity is blocked by inhibiting ROS induction, MMD, or caspase cleavage by specific inhibitors of electron transfer, or by stabilizing the ANT.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that cell type‐specific telomere shortening and senescence are linked to progression of human cirrhosis and imply that future therapies aiming to restore regenerative capacity during aging and chronic diseases will have to ensure efficient targeting of specific cell types within the affected organs.
Abstract: Telomere shortening limits the number of cell divisions of primary human cells and might affect the regenerative capacity of organ systems during aging and chronic disease. To test whether the telomere hypothesis applies to human cirrhosis, the telomere length was monitored in cirrhosis induced by a broad variety of different etiologies. Telomeres were significantly shorter in cirrhosis compared with noncirrhotic samples independent of the primary etiology and independent of the age of the patients. Quantitative fluorescence in situ hybridization showed that telomere shortening was restricted to hepatocytes whereas lymphocytes and stellate cells in areas of fibrosis had significantly longer telomere reserves. Hepatocyte-specific telomere shortening correlated with senescence-associated β-galactosidase staining in 84% of the cirrhosis samples, specifically in hepatocytes, but not in stellate cells or lymphocytes. Hepatocyte telomere shortening and senescence correlated with progression of fibrosis in cirrh...

Journal ArticleDOI
TL;DR: It is suggested that perivascular adventitial adipose tissue releases a transferable adventitium‐derived relaxing factor that acts by tyrosine kinase‐dependent activation of K+ channels in vascular smooth muscle cells.
Abstract: Virtually all blood vessels are surrounded by adventitial fat. Adipocytes produce a host of vasoactive substances that may influence vascular contraction. We tested whether or not perivascular adipose tissue modulates contraction of aortic ring preparations. We studied aortic rings surrounded by periadventitial adipose tissue from adult Sprague-Dawley rats. At a maximum concentration of 300 nM angiotensin II, 6.5 microM serotonin, and 5 microM phenylephrine, the contractile response of intact rings was 95%, 80%, and 30% lower than that of vessels without periadventitial fat. The anticontractile effect of periadventitial fat was reduced by inhibition of ATP-dependent K+ channels with glibenclamide (3 microM) and by the tyrosine kinase inhibitor genistein (10 microM). Blocking NOS, cyclo-oxygenase, cytochrome P450, or adenosine receptors did not restore the vascular response in intact vessels. The anticontractile effect of perivascular fat was present in Zucker fa/fa rats, suggesting that leptin receptors were not responsible. Transferring the bath solution from intact vessels, isolated periadventitial tissue, and cultured rat adipocytes to precontracted vessels lacking periadventitial fat resulted in a rapid relaxation. We suggest that perivascular adventitial adipose tissue releases a transferable adventitium-derived relaxing factor that acts by tyrosine kinase-dependent activation of K+ channels in vascular smooth muscle cells.

Journal ArticleDOI
TL;DR: The allergen microarray allows the determination and monitoring of allergic patients’ IgE reactivity profiles to large numbers of disease‐causing allergens by using single measurements and minute amounts of serum, and may change established practice in allergy diagnosis, prevention, and therapy.
Abstract: Type I allergy is an immunoglobulin E (IgE)-mediated hypersensitivity disease affecting more than 25% of the population. Currently, diagnosis of allergy is performed by provocation testing and IgE serology using allergen extracts. This process defines allergen-containing sources but cannot identify the disease-eliciting allergenic molecules. We have applied microarray technology to develop a miniaturized allergy test containing 94 purified allergen molecules that represent the most common allergen sources. The allergen microarray allows the determination and monitoring of allergic patients' IgE reactivity profiles to large numbers of disease-causing allergens by using single measurements and minute amounts of serum. This method may change established practice in allergy diagnosis, prevention, and therapy. In addition, microarrayed antigens may be applied to the diagnosis of autoimmune and infectious diseases.

Journal ArticleDOI
TL;DR: It now appears that growth factors, cytokines, and hormones regulate liver MAT mRNA levels and enzyme activity and that AdoMet should not be viewed only as an intermediate metabolite in methionine catabolism, but also as an intracellular control switch that regulates essential he‐patic functions such as regeneration, differentiation, and the sensitivity of this organ to injury.
Abstract: Genome sequence analysis reveals that all organisms synthesize S-adenosylmethionine (AdoMet) and that a large fraction of all genes is AdoMet-dependent methyltransferases AdoMet-dependent methylation has been shown to be central to many biological processes Up to 85% of all methylation reactions and as much as 48% of methionine metabolism occur in the liver, which indicates the crucial importance of this organ in the regulation of blood methionine Of the two mammalian genes (MAT1A, MAT2A) that encode methionine adenosyltransferase (MAT, the enzyme that makes AdoMet), MAT1A is specifically expressed in adult liver It now appears that growth factors, cytokines, and hormones regulate liver MAT mRNA levels and enzyme activity and that AdoMet should not be viewed only as an intermediate metabolite in methionine catabolism, but also as an intracellular control switch that regulates essential hepatic functions such as regeneration, differentiation, and the sensitivity of this organ to injury The aim of this review is to integrate these recent findings linking AdoMet with liver growth, differentiation, and injury into a comprehensive model With the availability of AdoMet as a nutritional supplement and evidence of its beneficial role in various liver diseases, this review offers insight into its mechanism of action

Journal ArticleDOI
TL;DR: The findings suggest that NO generation in vivo leads to concomitant formation of RSNOs, nitrosamines, and nitrosylhemes with considerable variation between rodents and primates, highlighting the difficulty in comparing data between different animal models and extrapolating results from experimental animals to human physiology.
Abstract: There is growing evidence for the involvement of nitric oxide (NO) -mediated nitrosation in cell signaling and pathology. Although S-nitrosothiols (RSNOs) have been frequently implicated in these processes, it is unclear whether NO forms nitrosyl adducts with moieties other than thiols. A major obstacle in assessing the significance of formation of nitrosated species is the limited reliability of available analytical techniques for measurements in complex biological matrices. Here we report on the presence of nitrosated compounds in plasma and erythrocytes of rats, mice, guinea pigs, and monkeys under basal conditions, in immunologically challenged murine macrophages in vitro and laboratory animals in vivo. Besides RSNOs, all biological samples also contained mercury-stable nitroso species, indicating the additional involvement of amine and heme nitros(yl)ation reactions. Significant differences in the amounts and ratios of RSNOs over N- and heme-nitros(yl)ated compounds were found between species and organs. These observations were made possible by the development of a novel gas-phase chemiluminescence-based technique that allows detection of nitroso species in tissues and biological fluids without prior extraction or deproteinization. The method can quantify as little as 100 fmol bound NO and has been validated extensively for use in different biological matrices. Discrimination between nitrite, RSNOs, and N-nitroso or nitrosylheme compounds is accomplished by use of group-specific reagents. Our findings suggest that NO generation in vivo leads to concomitant formation of RSNOs, nitrosamines, and nitrosylhemes with considerable variation between rodents and primates, highlighting the difficulty in comparing data between different animal models and extrapolating results from experimental animals to human physiology.

Journal ArticleDOI
TL;DR: Results provide convincing evidence that several, chemically distinct ligands of PPAR‐γ reduce the tissue necrosis associated with acute myocardial infarction and imply that TZDs and fibrates may help protect the heart against ischemiareperfusion injury.
Abstract: This study was designed to investigate the effects of various chemically distinct activators of PPAR-gamma and PPAR-alpha in a rat model of acute myocardial infarction. Using Northern blot analysis and RT-PCR in samples of rat heart, we document the expression of the mRNA for PPAR-gamma (isoform 1 but not isoform 2) as well as PPAR-beta and PPAR-alpha in freshly isolated cardiac myocytes and cardiac fibroblasts and in the left and right ventricles of the heart. Using a rat model of regional myocardial ischemia and reperfusion (in vivo), we have discovered that various chemically distinct ligands of PPAR-gamma (including the TZDs rosiglitazone, ciglitazone, and pioglitazone, as well as the cyclopentanone prostaglandins 15D-PGJ2 and PGA1) cause a substantial reduction of myocardial infarct size in the rat. We demonstrate that two distinct ligands of PPAR-alpha (including clofibrate and WY 14643) also cause a substantial reduction of myocardial infarct size in the rat. The most pronounced reduction in infarct size was observed with the endogenous PPAR-gamma ligand, 15-deoxyDelta12,14-prostagalndin J2 (15D-PGJ2). The mechanisms of the cardioprotective effects of 15D-PGJ2 may include 1) activation of PPAR-alpha, 2) activation of PPAR-gamma, 3) expression of HO-1, and 4) inhibition of the activation of NF-kappaB in the ischemic-reperfused heart. Inhibition by 15D-PGJ2 of the activation of NF-kappaB in turn results in a reduction of the 1) expression of inducible nitric oxide synthase and the nitration of proteins by peroxynitrite, 2) formation of the chemokine MCP-1, and 3) expression of the adhesion molecule ICAM-1. We speculate that ligands of PPAR-gamma and PPAR-alpha may be useful in the therapy of conditions associated with ischemia-reperfusion of the heart and other organs. Our findings also imply that TZDs and fibrates may help protect the heart against ischemia-reperfusion injury. This beneficial effect of 15D-PGJ2 was associated with a reduction in the expression of the 1) adhesion molecules ICAM-1 and P-selectin, 2) chemokine macrophage chemotactic protein 1, and 3) inducible isoform of nitric oxide synthase. 15D-PGJ2 reduced the nitration of proteins (immunohistological analysis of nitrotyrosine formation) caused by ischemia-reperfusion, likely due to the generation of peroxynitrite. Not all of the effects of 15D-PGJ2, however, are due to the activation of PPAR-gamma. For instance, exposure of rat cardiac myocytes to 15D-PGJ2, but not to rosiglitazone, results in an up-regulation of the expression of the mRNA for heme-oxygenase-1 (HO-1). Taken together, these results provide convincing evidence that several, chemically distinct ligands of PPAR-gamma reduce the tissue necrosis associated with acute myocardial infarction.

Journal ArticleDOI
TL;DR: It is shown that mammalian target of rapamycin (mTOR) signaling plays a key role in hypoxia‐triggered smooth muscle and endothelial proliferation and angiogenesis in vitro, and signaling via mTOR may represent a novel mechanism whereby Hypoxia augments mitogenstimulated vascular cell proliferation andAngiogenesis.
Abstract: Angiogenesis and vascular cell proliferation are pivotal in physiological and pathological processes including atherogenesis, restenosis, wound healing, and cancer development. Here we show that mammalian target of rapamycin (mTOR) signaling plays a key role in hypoxia-triggered smooth muscle and endothelial proliferation and angiogenesis in vitro. Hypoxia significantly increased DNA synthesis and proliferative responses to platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) in rat and human smooth muscle and endothelial cells. In an in vitro 3-dimensional model of angiogenesis, hypoxia increased PDGF- and FGF-stimulated sprout formation from rat and mouse aortas. Hypoxia did not modulate PDGF receptor mRNA, protein, or phosphorylation. PI3K activity was essential for cell proliferation under normoxic and hypoxic conditions. Activities of PI3K-downstream target PKB under hypoxia and normoxia were comparable. However, mTOR inhibition by rapamycin specifically abrogated hypoxia-mediated amplification of proliferation and angiogenesis, but was without effect on proliferation under normoxia. Accordingly, hypoxia-mediated amplification of proliferation was further augmented in mTOR-overexpressing endothelial cells. Thus, signaling via mTOR may represent a novel mechanism whereby hypoxia augments mitogen-stimulated vascular cell proliferation and angiogenesis.

Journal ArticleDOI
TL;DR: The data indicate that the proinflammatory cytokine TNF‐α is an obligatory component of dopaminergic neurodegeneration, and implicate the participation of glial cells in MPTP‐induced neurotoxicity.
Abstract: The pathogenic mechanisms underlying idiopathic Parkinson's disease (PD) remain enigmatic. Recent findings suggest that inflammatory processes are associated with several neurodegenerative disorders, including PD. Enhanced expression of the proinflammatory cytokine, tumor necrosis factor (TNF)-alpha, has been found in association with glial cells in the substantia nigra of patients with PD. To determine the potential role for TNF-alpha in PD, we examined the effects of the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP), a dopaminergic neurotoxin that mimics some of the key features associated with PD, using transgenic mice lacking TNF receptors. Administration of MPTP to wild-type (+/+) mice resulted in a time-dependent expression of TNF-alpha in striatum, which preceded the loss of dopaminergic markers and reactive gliosis. In contrast, transgenic mice carrying homozygous mutant alleles for both the TNF receptors (TNFR-DKO), but not the individual receptors, were completely protected against the dopaminergic neurotoxicity of MPTP. The data indicate that the proinflammatory cytokine TNF-alpha is an obligatory component of dopaminergic neurodegeneration. Moreover, because TNF-alpha is synthesized predominantly by microglia and astrocytes, our findings implicate the participation of glial cells in MPTP-induced neurotoxicity. Similar mechanisms may underlie the etiopathogenesis of PD.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that VEGF165 binds to CTGF through a protein‐to‐protein interaction and suggest that the angiogenic activity of V EGF165 is regulated negatively by CTGF in the extracellular environment.
Abstract: Vascular endothelial growth factor (VEGF) is a strong angiogenic mitogen and plays important roles in angiogenesis under various pathophysiological conditions. The in vivo angiogenic activity of secreted VEGF may be regulated by extracellular inhibitors, because it is also produced in avascular tissues such as the cartilage. To seek the binding inhibitors against VEGF, we screened the chondrocyte cDNA library by a yeast two-hybrid system by using VEGF165 as bait and identified connective tissue growth factor (CTGF) as a candidate. The complex formation of VEGF165 with CTGF was first established by immunoprecipitation from the cells overexpressing both binding partners. A competitive affinity-binding assay also demonstrated that CTGF binds specifically to VEGF165 with two classes of binding sites (Kd = 26 +/- 11 nM and 125 +/- 38 nM). Binding assay using deletion mutants of CTGF indicated that the thrombospondin type-1 repeat (TSP-1) domain of CTGF binds to the exon 7-coded region of VEGF165 and that the COOH-terminal domain preserves the affinity to both VEGF165 and VEGF121. The interaction of VEGF165 with CTGF inhibited the binding of VEGF165 to the endothelial cells and the immobilized KDR/IgG Fc; that is, a recombinant protein for VEGF165 receptor. By in vitro tube formation assay of endothelial cells, full-length CTGF and the deletion mutant possessing the TSP-1 domain inhibited VEGF165-induced angiogenesis significantly in the complex form. This antiangiogenic activity of CTGF was demonstrated further by in vivo angiogenesis assay by using Matrigel injection model in mice. These data demonstrate for the first time that VEGF165 binds to CTGF through a protein-to-protein interaction and suggest that the angiogenic activity of VEGF165 is regulated negatively by CTGF in the extracellular environment.

Journal ArticleDOI
TL;DR: Significant changes occurred in mRNAs for many growth‐related proteins and transcriptional regulators during fasting, which indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle.
Abstract: During fasting and many systemic diseases, muscle undergoes rapid loss of protein and functional capacity. To define the transcriptional changes triggering muscle atrophy and energy conservation in fasting, we used cDNA microarrays to compare mRNAs from muscles of control and food-deprived mice. Expression of >94% of genes did not change, but interesting patterns emerged among genes that were differentially expressed: 1) mRNAs encoding polyubiquitin, ubiquitin extension proteins, and many (but not all) proteasome subunits increased, which presumably contributes to accelerated protein breakdown; 2) a dramatic increase in mRNA for the ubiquitin ligase, atrogin-1, but not most E3s; 3) a significant suppression of mRNA for myosin binding protein H (but not other myofibrillar proteins) and IGF binding protein 5, which may favor cell protein loss; 4) decreases in mRNAs for several glycolytic enzymes and phosphorylase kinase subunits, and dramatic increases in mRNAs for pyruvate dehydrogenase kinase 4 and glutamine synthase, which should promote glucose sparing and gluconeogenesis. During fasting, metallothionein mRNA increased dramatically, mRNAs for extracellular matrix components fell, and mRNAs that may favor cap-independent mRNA translation rose. Significant changes occurred in mRNAs for many growth-related proteins and transcriptional regulators. These transcriptional changes indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle. Similar analysis of muscles atrophying for other causes is allowing us to identify a set of atrophy-specific changes in gene expression.

Journal ArticleDOI
TL;DR: It is shown that collagen fibrils in tendons from mice deficient in biglycan and/or fibromodulin are structurally and mechanically altered resulting in unstable joints and mutations in SLRPs may predispose to osteoarthritis.
Abstract: Small leucine-rich proteoglycans (SLRPs) regulate extracellular matrix organization, a process essential in development, tissue repair, and metastasis. In vivo interactions of biglycan and fibromodulin, two SLRPs highly expressed in tendons and bones, were investigated by generating biglycan/fibromodulin double-deficient mice. Here we show that collagen fibrils in tendons from mice deficient in biglycan and/or fibromodulin are structurally and mechanically altered resulting in unstable joints. As a result, the mice develop successively and progressively 1) gait impairment, 2) ectopic tendon ossification, and 3) severe premature osteoarthritis. Forced use of the joints increases ectopic ossification and osteoarthritis in the double-deficient mice, further indicating that structurally weak tendons cause the phenotype. The study shows that mutations in SLRPs may predispose to osteoarthritis and offers a valuable and unique animal model for spontaneous osteoarthritis characterized by early onset and a rapid progression of the disease.

Journal ArticleDOI
TL;DR: It is demonstrated that rats subjected to repeated cycles of intoxication and withdrawal develop a marked and long‐lasting increase in voluntary ethanol intake, which is likely to be encoded by long‐term changes in gene expression.
Abstract: Prolonged exposure of the brain to ethanol is a prerequisite for developing ethanol dependence, but the underlying neural adaptations are unknown. Here we demonstrate that rats subjected to repeated cycles of intoxication and withdrawal develop a marked and long-lasting increase in voluntary ethanol intake. Exposure-induced but not spontaneous alcohol intake is antagonized by acamprosate, a compound clinically effective in human alcoholism. Expression analysis of cingulate cortex and amygdala reveals a set of long-term up-regulated transcripts in this model. These include members of pathways previously implicated in alcohol dependence (glutamatergic, endocannabinoid, and monoaminergic neurotransmission), as well as pathways not previously thought to be involved in this disorder (e.g., members of the mitogen-activated protein kinase pathway). Thus, alternating periods of ethanol intoxication and withdrawal are sufficient to induce an altered functional brain state, which is likely to be encoded by long-term changes in gene expression. These observations may have important implications for how alcoholism is managed clinically. Novel clinically effective treatments may be possible to develop by targeting the products of genes found to be regulated in our model.

Journal ArticleDOI
TL;DR: It is hypothesized that other chemopreventive agents, including natural or synthetic retinoids, steroid hormone antagonists, peroxisome proliferator‐activated receptor γ li‐gands, vitamin D, and protease inhibitors, might have antiangiogenesis as an important mechanism of action, a novel concept the authors will term ‘angioprevention’.
Abstract: The potential to block tumor growth by inhibition of the neoangiogenic process represents an intriguing approach to the treatment of solid tumors. The high proliferation rate in the tumor deprived of proper vascularization would be balanced by cell death due to lack of diffusion of nutrients and oxygen. Matrix metalloproteinases (MMPs), angiogenic growth factors, and their receptors are the main targets of an increasing number of clinical trials approved to test the tolerance and therapeutic efficacy of antiangiogenic agents. We observed that a series of substances proposed as possible cancer chemopreventive agents show antiangiogenic properties when tested in in vitro and in vivo angiogenesis models. We demonstrated that N-acetyl-l-cysteine is able to reduce the invasive and metastatic potential of melanoma cells, and to inhibit endothelial cell invasion by direct inhibition of MMP activity. We also showed that epigallocatechin gallate (EGCG), a flavonoid from green tea that possesses chemopreventive activity in experimental and epidemiological studies, is a potent inhibitor of MMP-2 and MMP-9. Angiogenesis has also been demonstrated to be a target for nonsteroidal anti-inflammatory drug chemopreventive activity. Based on these data, we hypothesize that other chemopreventive agents, including natural or synthetic retinoids, steroid hormone antagonists, peroxisome proliferator-activated receptor gamma ligands, vitamin D, and protease inhibitors, might have antiangiogenesis as an important mechanism of action, a novel concept we will term 'angioprevention'. We analyze the mechanisms on how and why chemopreventive agents could exert antiangiogenic effects aimed at controlling tumor growth, and their potential use in the clinic.

Journal ArticleDOI
TL;DR: It is shown that heat‐shock proteins (HSPs), such as HSP90, HSP70, and HSP32, induce the production of interleukin 6 and tumor necrosis factor α and increase the phagocytosis and clearance of A β peptides, suggesting that microglial interaction with Aβ peptides is highly regulated by HSPs.
Abstract: Alzheimer's disease (AD) is characterized by the accumulation of fibrillar amyloid-beta (Abeta) peptides to form amyloid plaques. Understanding the balance of production and clearance of Abeta peptides is the key to elucidating amyloid plaque homeostasis. Microglia in the brain, associated with senile plaques, are likely to play a major role in maintaining this balance. Here, we show that heat-shock proteins (HSPs), such as HSP90, HSP70, and HSP32, induce the production of interleukin 6 and tumor necrosis factor alpha and increase the phagocytosis and clearance of Abeta peptides. This suggests that microglial interaction with Abeta peptides is highly regulated by HSPs. The mechanism of microglial activation by exogenous HSPs involves the nuclear factor kB and p38 mitogen-activated protein kinase pathways mediated by Toll-like receptor 4 activation. In AD brains, levels of HSP90 were increased in both the cytosolic and membranous fractions, and HSP90 was colocalized with amyloid plaques. These observations suggest that HSP-induced microglial activation may serve a neuroprotective role by facilitating Abeta clearance and cytokine production

Journal ArticleDOI
TL;DR: These studies demonstrate that tumor lymphangiogenesis is a major component of the metastatic process and implicate members of the VEGF family of growth factors as key mediators of lymphang iogenesis in both normal biology and tumors.
Abstract: The high mortality rates associated with cancer can be attributed to the metastatic spread of tumor cells from the site of their origin. Tumor cells invade either the blood or lymphatic vessels to access the general circulation and then establish themselves in other tissues. Clinicopathological data suggest that the lymphatics are an initial route for the spread of solid tumors. Detection of sentinel lymph nodes by biopsy provides significant information for staging and designing therapeutic regimens. The role of angiogenesis in facilitating the growth of solid tumors has been well established, but the presence of lymphatic vessels and the relevance of lymphangiogenesis to tumor spread are less clear. Recently, the molecular pathway that signals for lymphangiogenesis and relatively specific markers for lymphatic endothelium have been described allowing analyses of tumor lymphangiogenesis to be performed in animal models. These studies demonstrate that tumor lymphangiogenesis is a major component of the me...