scispace - formally typeset
Search or ask a question

Showing papers in "The FASEB Journal in 2005"


Journal ArticleDOI
TL;DR: Rational approaches in design and surface engineering of nanoscale vehicles and entities for site‐specific drug delivery and medical imaging after parenteral administration are highlighted.
Abstract: Applications of nanotechnology for treatment, diagnosis, monitoring, and control of biological systems has recently been referred to as "nanomedicine" by the National Institutes of Health. Research into the rational delivery and targeting of pharmaceutical, therapeutic, and diagnostic agents is at the forefront of projects in nanomedicine. These involve the identification of precise targets (cells and receptors) related to specific clinical conditions and choice of the appropriate nanocarriers to achieve the required responses while minimizing the side effects. Mononuclear phagocytes, dendritic cells, endothelial cells, and cancers (tumor cells, as well as tumor neovasculature) are key targets. Today, nanotechnology and nanoscience approaches to particle design and formulation are beginning to expand the market for many drugs and are forming the basis for a highly profitable niche within the industry, but some predicted benefits are hyped. This article will highlight rational approaches in design and surface engineering of nanoscale vehicles and entities for site-specific drug delivery and medical imaging after parenteral administration. Potential pitfalls or side effects associated with nanoparticles are also discussed.

1,855 citations


Journal ArticleDOI
TL;DR: In this article, normal human brain endothelial cells were transduced by lentiviral vectors incorporating human telomerase or SV40 T antigen, and one was selected for expression of normal endothelial markers, including CD31, VE cadherin, and von Willebrand factor.
Abstract: Establishment of a human model of the blood-brain barrier has proven to be a difficult goal. To accomplish this, normal human brain endothelial cells were transduced by lentiviral vectors incorporating human telomerase or SV40 T antigen. Among the many stable immortalized clones obtained by sequential limiting dilution cloning of the transduced cells, one was selected for expression of normal endothelial markers, including CD31, VE cadherin, and von Willebrand factor. This cell line, termed hCMEC/D3, showed a stable normal karyotype, maintained contact-inhibited monolayers in tissue culture, exhibited robust proliferation in response to endothelial growth factors, and formed capillary tubes in matrix but no colonies in soft agar. hCMEC/D3 cells expressed telomerase and grew indefinitely without phenotypic dedifferentiation. These cells expressed chemokine receptors, up-regulated adhesion molecules in response to inflammatory cytokines, and demonstrated blood-brain barrier characteristics, including tight junctional proteins and the capacity to actively exclude drugs. hCMEC/D3 are excellent candidates for studies of blood-brain barrier function, the responses of brain endothelium to inflammatory and infectious stimuli, and the interaction of brain endothelium with lymphocytes or tumor cells. Thus, hCMEC/D3 represents the first stable, fully characterized, well-differentiated human brain endothelial cell line and should serve as a widely usable research tool.

1,205 citations


Journal ArticleDOI
TL;DR: It is demonstrated that EAA stimulate MPS independently of increased insulin availability, and in the elderly, a deficit in MPS in the basal state is unlikely; and the decreased sensitivity and responsiveness of MPS to EAA, associated with decrements in the expression and activation of components of anabolic signaling pathways, are probably major contributors to the failure of muscle maintenance inThe elderly.
Abstract: The nature of the deficit underlying age-related muscle wasting remains controversial. To test whether it could be due to a poor anabolic response to dietary amino acids, we measured the rates of myofibrillar and sarcoplasmic muscle protein synthesis (MPS) in 44 healthy young and old men, of similar body build, after ingesting different amounts of essential amino acids (EAA). Basal rates of MPS were indistinguishable, but the elderly showed less anabolic sensitivity and responsiveness of MPS to EAA, possibly due to decreased intramuscular expression, and activation (phosphorylation) after EAA, of amino acid sensing/signaling proteins (mammalian target of rapamycin, mTOR; p70 S6 kinase, or p70(S6k); eukaryotic initiation factor [eIF]4BP-1; and eIF2B). The effects were independent of insulin signaling since plasma insulin was clamped at basal values. Associated with the anabolic deficits were marked increases in NFkappaB, the inflammation-associated transcription factor. These results demonstrate first, EAA stimulate MPS independently of increased insulin availability; second, in the elderly, a deficit in MPS in the basal state is unlikely; and third, the decreased sensitivity and responsiveness of MPS to EAA, associated with decrements in the expression and activation of components of anabolic signaling pathways, are probably major contributors to the failure of muscle maintenance in the elderly. Countermeasures to maximize muscle maintenance should target these deficits.

1,118 citations


Journal ArticleDOI
TL;DR: The results suggest that nigral neuronal damage, regardless of etiology, may release aggregated α‐synuclein into substantia nigra, which activates microglia with production of proinflammatory mediators, thereby leading to persistent and progressive nigral neurodegeneration in PD.
Abstract: A growing body of evidence indicates that an inflammatory process in the substantia nigra, characterized by activation of resident microglia, likely either initiates or aggravates nigral neurodegeneration in Parkinson's disease (PD). To study the mechanisms by which nigral microglia are activated in PD, the potential role of alpha-synuclein (a major component of Lewy bodies that can cause neurodegeneration when aggregated) in microglial activation was investigated. The results demonstrated that in a primary mesencephalic neuron-glia culture system, extracellular aggregated human alpha-synuclein indeed activated microglia; microglial activation enhanced dopaminergic neurodegeneration induced by aggregated alpha-synuclein. Furthermore, microglial enhancement of alpha-synuclein-mediated neurotoxicity depended on phagocytosis of alpha-synuclein and activation of NADPH oxidase with production of reactive oxygen species. These results suggest that nigral neuronal damage, regardless of etiology, may release aggregated alpha-synuclein into substantia nigra, which activates microglia with production of proinflammatory mediators, thereby leading to persistent and progressive nigral neurodegeneration in PD. Finally, NADPH oxidase could be an ideal target for potential pharmaceutical intervention, given that it plays a critical role in alpha-synuclein-mediated microglial activation and associated neurotoxicity.

1,097 citations


Journal ArticleDOI
TL;DR: It is shown that 1,25‐dihydroxyvitamin D3 and three of its analogs induced expression of the human cathelicidin antimicrobial peptide (CAMP) gene, which is a direct target of the vitamin D receptor and is strongly up‐regulated in myeloid cells by 1, 25‐dietary D3.
Abstract: The innate immune system of mammals provides a rapid response to repel assaults from numerous infectious agents including bacteria, viruses, fungi, and parasites. A major component of this system is a diverse combination of cationic antimicrobial peptides that include the alpha- and beta-defensins and cathelicidins. In this study, we show that 1,25-dihydroxyvitamin D3 and three of its analogs induced expression of the human cathelicidin antimicrobial peptide (CAMP) gene. This induction was observed in acute myeloid leukemia (AML), immortalized keratinocyte, and colon cancer cell lines, as well as normal human bone marrow (BM) -derived macrophages and fresh BM cells from two normal individuals and one AML patient. The induction occurred via a consensus vitamin D response element (VDRE) in the CAMP promoter that was bound by the vitamin D receptor (VDR). Induction of CAMP in murine cells was not observed and expression of CAMP mRNA in murine VDR-deficient bone marrow was similar to wild-type levels. Comparison of mammalian genomes revealed evolutionary conservation of the VDRE in a short interspersed nuclear element or SINE in the CAMP promoter of primates that was absent in the mouse, rat, and canine genomes. Our findings reveal a novel activity of 1,25-dihydroxyvitamin D3 and the VDR in regulation of primate innate immunity.

1,044 citations


Journal ArticleDOI
TL;DR: In vivo evidence is provided for the first time to support the concept that osteocytes secrete sclerostin after they become embedded in a mineralized matrix to limit further bone formation by osteoblasts and propose that sclerOSTin production by osteocytes may regulate the linear extent of formation and the induction or maintenance of a lining cell phenotype on bone surfaces.
Abstract: Osteocytes are the most abundant cells in bone and are ideally located to influence bone turnover through their syncytial relationship with surface bone cells. Osteocyte-derived signals have remained largely enigmatic, but it was recently reported that human osteocytes secrete sclerostin, an inhibitor of bone formation. Absent sclerostin protein results in the high bone mass clinical disorder sclerosteosis. Here we report that within adult iliac bone, newly embedded osteocytes were negative for sclerostin staining but became positive at or after primary mineralization. The majority of mature osteocytes in mineralized cortical and cancellous bone was positive for sclerostin with diffuse staining along dendrites in the osteocyte canaliculi. These findings provide for the first time in vivo evidence to support the concept that osteocytes secrete sclerostin after they become embedded in a mineralized matrix to limit further bone formation by osteoblasts. Sclerostin did not appear to influence the formation of osteocytes. We propose that sclerostin production by osteocytes may regulate the linear extent of formation and the induction or maintenance of a lining cell phenotype on bone surfaces. In doing so, sclerostin may act as a key inhibitory signal governing skeletal microarchitecture.

898 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated if aging exacerbated neuroinflammation and sickness behavior after peripheral injection of lipopolysaccharide (LPS) and found that the LPS-induced elevation in the brain inflammatory cytokines and oxidative stress was both exaggerated and prolonged compared with adults.
Abstract: Acute cognitive impairment (i.e., delirium) is common in elderly emergency department patients and frequently results from infections that are unrelated to the central nervous system. Since activation of the peripheral innate immune system induces brain microglia to produce inflammatory cytokines that are responsible for behavioral deficits, we investigated if aging exacerbated neuroinflammation and sickness behavior after peripheral injection of lipopolysaccharide (LPS). Microarray analysis revealed a transcriptional profile indicating the presence of primed or activated microglia and increased inflammation in the aged brain. Furthermore, aged mice had a unique gene expression profile in the brain after an intraperitoneal injection of LPS, and the LPS-induced elevation in the brain inflammatory cytokines and oxidative stress was both exaggerated and prolonged compared with adults. Aged mice were anorectic longer and lost more weight than adults after peripheral LPS administration. Moreover, reductions in both locomotor and social behavior remained 24 h later in aged mice, when adults had fully recovered, and the exaggerated neuroinflammatory response in aged mice was not reliably paralleled by increased circulating cytokines in the periphery. Taken together, these data establish that activation of the peripheral innate immune system leads to exacerbated neuroinflammation in the aged as compared with adult mice. This dysregulated link between the peripheral and central innate immune system is likely to be involved in the severe behavioral deficits that frequently occur in older adults with systemic infections.

751 citations


Journal ArticleDOI
TL;DR: It is suggested that H2S exhibits proinflammatory activity in endotoxic shock and a new approach to the development of novel drugs for this condition is suggested.
Abstract: Hydrogen sulfide (H2S) is synthesized in the body from L-cysteine by several enzymes including cystathionine-gamma-lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin-induced inflammation in the mouse. E. coli lipopolysaccharide (LPS) administration produced a dose (10 and 20 mg/kg ip)- and time (6 and 24 h)-dependent increase in plasma H2S concentration. LPS (10 mg/kg ip, 6 h) increased plasma H2S concentration from 34.1 +/- 0.7 microM to 40.9 +/- 0.6 microM (n=6, P<0.05) while H2S formation from added L-cysteine was increased in both liver and kidney. CSE gene expression was also increased in both liver (94.2+/-2.7%, n=6, P<0.05) and kidney (77.5+/-3.2%, n=6, P<0.05). LPS injection also elevated lung (148.2+/-2.6%, n=6, P<0.05) and kidney (78.8+/-8.2%, n=6, P<0.05) myeloperoxidase (MPO, a marker of tissue neutrophil infiltration) activity alongside histological evidence of lung, liver, and kidney tissue inflammatory damage. Plasma nitrate/nitrite (NOx) concentration was additionally elevated in a time- and dose-dependent manner in LPS-injected animals. To examine directly the possible proinflammatory effect of H2S, mice were administered sodium hydrosulfide (H2S donor drug, 14 micromol/kg ip) that resulted in marked histological signs of lung inflammation, increased lung and liver MPO activity, and raised plasma TNF-alpha concentration (4.6+/-1.4 ng/ml, n=6). In contrast, DL-propargylglycine (CSE inhibitor, 50 mg/kg ip), exhibited marked anti-inflammatory activity as evidenced by reduced lung and liver MPO activity, and ameliorated lung and liver tissue damage. In separate experiments, we also detected significantly higher (150.5+/-43.7 microM c.f. 43.8+/-5.1 microM, n=5, P<0.05) plasma H2S levels in humans with septic shock. These findings suggest that H2S exhibits proinflammatory activity in endotoxic shock and suggest a new approach to the development of novel drugs for this condition.

730 citations


Journal ArticleDOI
TL;DR: It is demonstrated that intracellular Aβ is present in mitochondria from brains of transgenic mice with targeted neuronal overexpression of mutant human amyloid precursor protein and AD patients, delineating a new means through which Aβ potentially impairs neuronal energetics, contributing to cellular dysfunction in AD.
Abstract: Although amyloid-beta peptide (Abeta) is the neurotoxic species implicated in the pathogenesis of Alzheimer's disease (AD), mechanisms through which intracellular Abeta impairs cellular properties, resulting in neuronal dysfunction, remain to be clarified. Here we demonstrate that intracellular Abeta is present in mitochondria from brains of transgenic mice with targeted neuronal overexpression of mutant human amyloid precursor protein and AD patients. Abeta progressively accumulates in mitochondria and is associated with diminished enzymatic activity of respiratory chain complexes (III and IV) and a reduction in the rate of oxygen consumption. Importantly, mitochondria-associated Abeta, principally Abeta42, was detected as early as 4 months, before extensive extracellular Abeta deposits. Our studies delineate a new means through which Abeta potentially impairs neuronal energetics, contributing to cellular dysfunction in AD.

671 citations


Journal ArticleDOI
TL;DR: Developing mitochondria‐targeted antioxidants, typified by MitoQ, which comprises a lipophilic triphenylphosphonium (TPP) cation covalently attached to a ubiquinol antioxidant, significantly decreased heart dysfunction, cell death, and mitochondrial damage after ischemia‐reperfusion injury.
Abstract: Mitochondrial oxidative damage contributes to a wide range of pathologies, including cardiovascular disorders and neurodegenerative diseases. Therefore, protecting mitochondria from oxidative damage should be an effective therapeutic strategy. However, conventional antioxidants have limited efficacy due to the difficulty of delivering them to mitochondria in situ. To overcome this problem, we developed mitochondria-targeted antioxidants, typified by MitoQ, which comprises a lipophilic triphenylphosphonium (TPP) cation covalently attached to a ubiquinol antioxidant. Driven by the large mitochondrial membrane potential, the TPP cation concentrates MitoQ several hundred-fold within mitochondria, selectively preventing mitochondrial oxidative damage. To test whether MitoQ was active in vivo, we chose a clinically relevant form of mitochondrial oxidative damage: cardiac ischemia-reperfusion injury. Feeding MitoQ to rats significantly decreased heart dysfunction, cell death, and mitochondrial damage after ischemia-reperfusion. This protection was due to the antioxidant activity of MitoQ within mitochondria, as an untargeted antioxidant was ineffective and accumulation of the TPP cation alone gave no protection. Therefore, targeting antioxidants to mitochondria in vivo is a promising new therapeutic strategy in the wide range of human diseases such as Parkinson's disease, diabetes, and Friedreich's ataxia where mitochondrial oxidative damage underlies the pathology.

579 citations


Journal ArticleDOI
TL;DR: The data suggest that TNF‐α acts via p38 to increase atrogin1/MAFbx gene expression in skeletal muscle, which is similar to what was found with H2O2.
Abstract: Atrogin1/MAFbx is an ubiquitin ligase that mediates muscle atrophy in a variety of catabolic states. We recently found that H2O2 stimulates atrogin1/MAFbx gene expression. Since the cytokine tumor necrosis factor-alpha (TNF-alpha) stimulates both reactive oxygen production and general activity of the ubiquitin conjugating pathway, we hypothesized that TNF-alpha would also increase atrogin1/MAFbx gene expression. As with H2O2, we found that TNF-alpha exposure up-regulates atrogin1/MAFbx mRNA within 2 h in C2C12 myotubes. Intraperitoneal injection of TNF-alpha increased atrogin1/MAFbx mRNA in skeletal muscle of adult mice within 4 h. Exposing myotubes to either TNF-alpha or H2O2 also produced general activation of the mitogen-activated protein kinases (MAPKs): p38, ERK1/2, and JNK. The increase in atrogin1/MAFbx gene expression induced by TNF-alpha was not altered significantly by ERK inhibitor PD98059 or the JNK inhibitor SP600125. In contrast, atrogin1/MAFbx up-regulation and the associated increase in ubiquitin conjugating activity were both blunted by p38 inhibitors, either SB203580 or curcumin. These data suggest that TNF-alpha acts via p38 to increase atrogin1/MAFbx gene expression in skeletal muscle.

Journal ArticleDOI
TL;DR: The widespread nature of NRF2 may have an important therapeutic potential, allowing prevention of carcinogenesis and neurodegenerative diseases, and is supported by microarray data indicating the protective role of Nrf2 is conveyed through both known ARE‐driven genes and novel cell type‐specific genes.
Abstract: NF-E2-related factor 2 (Nrf2) is a basic leucine zipper transcription factor that binds to the promoter sequence “antioxidant responsive element (ARE)” leading to coordinated up-regulation of ARE-driven detoxification and antioxidant genes. Since the expression of a wide array of antioxidant and detoxification genes are positively regulated by the ARE sequence, Nrf2 may serve as a master regulator of the ARE-driven cellular defense system against oxidative stress. In support of this, numerous studies have shown that Nrf2 protects many cell types and organ systems from a broad spectrum of toxic insults and disease pathogenesis. This Nrf2-conferred, multi-organ protection phenomenon raises an interesting question about how a single protein can protect many different organs from various toxic insults. A possible molecular mechanism explaining this phenomenon is that Nrf2 protects many different cell types by coordinately up-regulating classic ARE-driven genes as well as cell type-specific target genes that a...

Journal ArticleDOI
TL;DR: Even in the absence of endocrine, neural, or vascular systemic connections, normal human scalp hair follicles directly respond to CRH stimulation in a strikingly similar manner to what is seen in the classical HPA axis, including synthesis and secretion of cortisol and activation of prototypic neuroendocrine feedback loops.
Abstract: SPECIFIC AIMSPrevious research has shown that the skin and its major appendage, the hair follicle, are prominent target organs and potent sources of key players along the classical hypothalamic pituitary adrenal (HPA) axis [e.g., of corticotropin-releasing hormone (CRH) and of melanocortins like adrenocorticotropic hormone (ACTH) and α-melanocyte-stimulating hormone (α-MSH)]. Mammalian skin has been shown to possess the full enzymatic equipment for glucocorticoid synthesis. The aim of the present study, therefore, was to explore whether human skin, namely, normal human scalp hair follicles, contain a functional HPA axis, including the synthesis of cortisol and regulatory feedback loops as they characterize the central HPA axis, using microdissected, organ-cultured human scalp hair follicles stimulated with CRH, α-MSH, ACTH, or hydrocortisone.PRINCIPAL FINDINGS1. POMC transcription and immunoreactivity (IR) for POMC products are up-regulated by CRH treatmentFirst, we studied whether CRH (comparable to the ...

Journal ArticleDOI
TL;DR: The data suggest that a specific signaling response to LFS is a specific activation of the AMPK‐PGC‐1α signaling pathway which may explain some endurance training adaptations.
Abstract: SPECIFIC AIMSEndurance training induces a partial fast-to-slow muscle phenotype transformation and mitochondrial biogenesis, but it usually induces no growth. In contrast, resistance training stimulates muscle growth but has little effect on phenotype. We used 3 h of low-frequency stimulation (LFS) of isolated rat skeletal muscle to mimic endurance training and sixty 3 s bursts of high-frequency stimulation (HFS) to mimic resistance training. The specific aims were to identify signaling events that are activated by either LFS or HFS and that can explain the specific muscle adaptations to such stimulation patterns.PRINCIPAL FINDINGSLFS and HFS had specific effects on adaptation markers and on the activation of numerous signal transduction proteins.1. LFS, but not HFS, increases AMPK Thr172 phosphorylation and induces PGC-1α and UCP-3AMP kinase (AMPK) Thr172 phosphorylation and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) increased significantly to 2.02 ± 0.11 and 1.30 ± 0.04 of ...

Journal ArticleDOI
TL;DR: The idea that placental HLA‐G proteins facilitate semiallogeneic pregnancy by inhibiting maternal immune responses to foreign (paternal) antigens via these actions on immune cells is now well established, and the postulate that the recombinant counterparts of these proteins may be used as powerful tools for preventing immune rejection of transplanted organs is gaining in popularity.
Abstract: Multiple mechanisms underlie the surprising willingness of mothers to tolerate genetically different fetal tissues during pregnancy. Chief among these is the choice of HLA-G, a gene with few alleles, rather than the highly polymorphic HLA-A and -B genes, for expression by the placental cells that interface directly with maternal blood and tissues. Novel aspects of this major histocompatibility complex class Ib gene include alternative splicing to permit production of membrane and soluble isoforms, deletions that dampen responses to interferons, and a shortened cytoplasmic tail that affects expression at the cell surface. Placental cells migrating into the maternal uterus synthesize both membrane and soluble isoforms, which interact with inhibitory receptors on leukocytes such as ILT2 and ILT4. Cytotoxic T lymphocytes either die or reduce production of one of their major coreceptor/activator cell surface molecules, CD8; natural killer cells are immobilized and mononuclear phagocytes are programmed into suppressive modes characterized by high production of anti-inflammatory cytokines. The idea that placental HLA-G proteins facilitate semiallogeneic pregnancy by inhibiting maternal immune responses to foreign (paternal) antigens via these actions on immune cells is now well established, and the postulate that the recombinant counterparts of these proteins may be used as powerful tools for preventing immune rejection of transplanted organs is gaining in popularity.

Journal ArticleDOI
TL;DR: It is shown that TGF‐β‐induced activation of the nonreceptor c‐abl tyrosine kinase regulates fibroblast proliferation and, by this means, is a costimulatory signal in TGF•β‐ dependent renal fibrogenesis.
Abstract: Transforming growth factor-beta (TGF-beta) is the single most important cytokine promoting renal fibrogenesis. p21-activated kinase-2 (PAK2) and activation of abelson nonreceptor tyrosine kinase (c-abl) have been shown recently to be smad-independent, fibroblast-specific targets downstream of the activated TGF-beta receptor. In the current study we show that in cultured NRK49F-renal fibroblasts (but not in tubular or mesangial cells) TGF-beta similarly activates PAK2 as well as c-abl and induces cell proliferation. Inhibition of the c-abl kinase with imatinib mesylate prevents increased proliferation after TGF-beta addition without affecting PAK2. These in vitro findings were extended to rats with unilateral obstructive nephropathy, a disease model of TGF-beta-driven renal fibrogenesis. In obstructed kidneys, PAK2 and c-abl activity were increased but only c-abl activation was blocked by imatinib. Treatment with imatinib did not prevent renal interstitial infiltration of macrophages or phosphorylation and nuclear translocation of smad2/3 in obstructed kidneys. In contrast, imatinib substantially inhibited an increase in the number of interstitial fibroblasts and myofibroblasts and reduced the expression and interstitial accumulation of collagen type III, collagen type IV and fibronectin. These findings indicate that TGF-beta-induced activation of the nonreceptor c-abl tyrosine kinase regulates fibroblast proliferation and, by this means, is a costimulatory signal in TGF-beta-dependent renal fibrogenesis. Inhibition of c-abl activity with imatinib mesylate ameliorates experimental renal fibrosis in rats.

Journal ArticleDOI
TL;DR: This study is the first to characterize global mRNA expression during recovery from endurance Exercise, and the results provide potential insight into 1) the transcriptional contributions to homeostatic recovery in human skeletal muscle after endurance exercise, and 2) the adaptive processes that occur after a period of endurance exercise training.
Abstract: To search for novel transcriptional pathways that are activated in skeletal muscle after endurance exercise, we used cDNA microarrays to measure global mRNA expression after an exhaustive bout of high-intensity cycling (~75 min). Healthy, young, sedentary males performed the cycling bout, and skeletal muscle biopsies were taken from the vastus lateralis before, and at 3 and 48 h after exercise. We examined mRNA expression in individual muscle samples from four subjects using cDNA microarrays, used repeated-measures significance analysis of microarray (SAM) to determine statistically significant expression changes, and confirmed selected results using realtime RT-PCR. In total, the expression of 118 genes significantly increased 3 h postcycling and 8 decreased. At 48 h, the expression of 29 genes significantly increased and 5 decreased. Many of these are potentially important novel genes involved in exercise recovery and adaptation, including several involved in 1) metabolism and mitochondrial biogenesis (FOXO1, PPARδ, PPARγ, nuclear receptor binding protein 2, IL-6 receptor, ribosomal protein L2, aminolevulinate δ-synthase 2); 2) the oxidant stress response (metalothioneins 1B, 1F, 1G, 1H, 1L, 2A, 3, interferon regulatory factor 1); and 3) electrolyte transport across membranes [Na + -K + -ATPase (β3), SERCA3, chloride channel 4]. Others include genes involved in cell stress, proteolysis, apoptosis, growth, differentiation, and transcriptional activation, as well as all three nuclear receptor subfamily 4A family members (Nur77, Nurr1, and Nor1). This study is the first to characterize global mRNA expression during recovery from endurance exercise, and the results provide potential insight into 1) the transcriptional contributions to homeostatic recovery in human skeletal muscle after endurance exercise, and 2) the transcriptional contributions from a single bout of endurance exercise to the adaptive processes that occur after a period of endurance exercise training.

Journal ArticleDOI
TL;DR: The ESCODD consortium of mainly European laboratories has attempted to minimize this artifact and to provide standard, reliable protocols for sample preparation and analysis as mentioned in this paper. But the accuracy of low levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in DNA is hampered by the ease with which guanine is oxidized during preparation of DNA for analysis.
Abstract: Accurate measurement of low levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in DNA is hampered by the ease with which guanine is oxidized during preparation of DNA for analysis. ESCODD, a consortium of mainly European laboratories, has attempted to minimize this artifact and to provide standard, reliable protocols for sample preparation and analysis. ESCODD has now analyzed 8-oxodGuo in the DNA of lymphocytes isolated from venous blood from healthy young male volunteers in several European countries. Two approaches were used. Analysis of 8-oxodGuo by HPLC with electrochemical detection was performed on lymphocytes from 10 groups of volunteers, in eight countries. The alternative enzymic approach was based on digestion of DNA with formamidopyrimidine DNA glycosylase (FPG) to convert 8-oxo-7,8-dihydroguanine (8-oxoGua) to apurinic sites, subsequently measured as DNA breaks using the comet assay (7 groups of volunteers, in six countries). The median concentration of 8-oxodGuo in lymphocyte DNA, calculated from the mean values of each group of subjects as determined by HPLC, was 4.24 per 10(6) guanines. The median concentration of FPG-sensitive sites, measured with the comet assay, was 0.34 per 10(6) guanines. Identical samples of HeLa cells were supplied to all participants as a reference standard. The median values for 8-oxodGuo in HeLa cells were 2.78 per 10(6) guanines (by HPLC) and 0.50 per 10(6) guanines (by enzymic methods). The discrepancy between chromatographic and FPG-based approaches may reflect overestimation by HPLC (if spurious oxidation is still not completely controlled) or underestimation by the enzymic method. Meanwhile, it is clear that the true background level of base oxidation in DNA is orders of magnitude lower than has often been claimed in the past.

Journal ArticleDOI
TL;DR: Findings provide compelling evidence that a causal relationship exists between STAT3 activation and HIF‐1‐dependent angiogenesis and suggest that therapeutic modalities designed to disrupt STAT3 signaling hold considerable promise for the blocking tumor growth and enhancing apoptosis of cancer cells and tissues.
Abstract: Aberrantly enhanced vascular endothelial growth factor (VEGF) gene expression is associated with increased tumor growth and metastatic spread of solid malignancies, including human renal carcinomas. Persistent activation of STAT3 is linked to tumor-associated angiogenesis, but underlying mechanisms remain unclear. Therefore, we examined whether STAT3 modulates the stability and activity of hypoxia-inducible factor-1alpha (HIF-1alpha), and in turn enhances VEGF expression. We found that STAT3 was activated in ischemic rat kidneys and hypoxic human renal carcinoma cells. We also found that hypoxia-induced activation of STAT3 transactivated the VEGF promoter and increased the expression of VEGF transcripts. Consistent with these findings, STAT3 inhibition attenuated the hypoxic induction of VEGF. Interestingly, activated STAT3 increased HIF-1alpha protein levels due to the HIF-1alpha stability by blocking HIF-1alpha degradation and accelerated its de novo synthesis. The novel interaction of STAT3 with HIF-1alpha was identified in hypoxic renal carcinoma cells. Furthermore, hypoxia recruited STAT3, HIF-1alpha, and p300 to the VEGF promoter and induced histone H3 acetylation. Therefore, these findings provide compelling evidence that a causal relationship exists between STAT3 activation and HIF-1-dependent angiogenesis and suggest that therapeutic modalities designed to disrupt STAT3 signaling hold considerable promise for the blocking tumor growth and enhancing apoptosis of cancer cells and tissues.

Journal ArticleDOI
TL;DR: The reduced ICP and CSF production in AQP1 null mice provides direct functional evidence for the involvement of AQP2 in CSF dynamics, suggesting AQP 1 inhibition as a novel option for therapy of elevated ICP.
Abstract: Aquaporin-1 (AQP1) is a water channel expressed strongly at the ventricular-facing surface of choroid plexus epithelium. We developed novel methods to compare water permeability in isolated choroid plexus of wild-type vs. AQP1 null mice, as well as intracranial pressure (ICP) and cerebrospinal fluid (CSF) production and absorption. Osmotically induced water transport was rapid in choroid plexus from wild-type mice and reduced by fivefold by AQP1 deletion. AQP1 deletion did not affect choroid plexus size or structure. By stereotaxic puncture of the lateral ventricle with a microneedle, ICP was 9.5 +/- 1.4 cm H2O in wild-type mice and 4.2 +/- 0.4 cm H2O in AQP1 null mice. CSF production, an isosmolar fluid secretion process, was measured by a dye dilution method involving fluid collections using a second microneedle introduced into the cisterna magna. CSF production in wild-type mice was (in microl min(-1)) 0.37 +/- 0.04 (control), 0.16 +/- 0.03 (acetazolamide-treated), and 1.14 +/- 0.15 (forskolin-treated), and reduced by approximately 25% in AQP1 null mice. Pressure-dependent CSF outflow, measured from steady-state ICP at different ventricular infusion rates, was not affected by AQP1 deletion. In a model of focal brain injury, AQP1 null mice had remarkably reduced ICP and improved survival compared with wild-type mice. The reduced ICP and CSF production in AQP1 null mice provides direct functional evidence for the involvement of AQP1 in CSF dynamics, suggesting AQP1 inhibition as a novel option for therapy of elevated ICP.

Journal ArticleDOI
TL;DR: GE11 is a potentially safe and efficient targeting moiety for selective drug delivery systems mediated through EGFR, and it is shown that the peptides were internalized preferentially into EGFR highly expressing cells, and they accumulated in EGFR overexpressing tumor xenografts after i.v. delivery in vivo.
Abstract: Epidermal growth factor receptor (ErbB1, EGFR) is overexpressed in a variety of human cancer cells. It has been considered as a rational target for drug delivery. To identify novel ligands with specific binding capabilities to EGFR, we screened a phage display peptide library and found an enriched phage clone encoding the amino acid sequence YHWYGYTPQNVI (designated as GE11). Competitive binding assay and Scatchard analysis revealed that GE11 peptide bound specifically and efficiently to EGFR with a dissociation constant of approximately 22 nM, but with much lower mitogenic activity than with EGF. We showed that the peptides were internalized preferentially into EGFR highly expressing cells, and they accumulated in EGFR overexpressing tumor xenografts after i.v. delivery in vivo. In gene delivery studies, GE11-conjugated polyethylenimine (PEI) vectors were less mitogenic, but still quite efficient at transfecting genes into EGFR highly expressing cells and tumor xenografts. Taken together, GE11 is a potentially safe and efficient targeting moiety for selective drug delivery systems mediated through EGFR.

Journal ArticleDOI
TL;DR: The results reveal that the bioactivities exerted by CORM‐A1 reflect its intrinsic biochemical behavior of a slow CO releaser, which may be advantageous in the treatment of chronic conditions that require CO to be delivered in a carefully controlled manner.
Abstract: Carbon monoxide (CO) is emerging as an important and versatile mediator of physiological processes to the extent that treatment of animals with exogenous CO gas has beneficial effects in a range of vascular- and inflammatory-related disease models. The recent discovery that certain transition metal carbonyls function as CO-releasing molecules (CO-RMs) in biological systems highlighted the potential of exploiting this and similar classes of compounds as a stratagem to deliver CO for therapeutic purposes. Here we describe the biochemical features and pharmacological actions of a newly identified water-soluble CO releaser (CORM-A1) that, unlike the first prototypic molecule recently described (CORM-3), does not contain a transition metal and liberates CO at a much slower rate under physiological conditions. Using a myoglobin assay and an amperometric CO electrode, we demonstrated that the release of CO from CORM-A1 is both pH- and temperature-dependent with a half-life of approximately 21 min at 37 degrees C and pH 7.4. In isolated aortic rings, CORM-A1 promoted a gradual but profound concentration-dependent vasorelaxation over time, which was highly amplified by YC-1 (1 microM) and attenuated by ODQ, a stimulator and inhibitor of guanylate cyclase, respectively. Similarly, administration of CORM-A1 (30 micromol/kg i.v.) in vivo produced a mild decrease in mean arterial pressure, which was markedly potentiated by pretreatment with YC-1 (1.2 micromol/kg i.v.). Interestingly, an inactive form of CORM-A1 that is incapable of releasing CO failed to promote both vasorelaxation and hypotension, thus directly implicating CO as the mediator of the observed pharmacological effects. Our results reveal that the bioactivities exerted by CORM-A1 reflect its intrinsic biochemical behavior of a slow CO releaser, which may be advantageous in the treatment of chronic conditions that require CO to be delivered in a carefully controlled manner.

Journal ArticleDOI
TL;DR: The data clearly indicated that SR141716 reversed the phenotype of obese adipocytes at both macroscopic and genomic levels, and strongly indicate that the endocannabinoid system has a major role in the regulation of energy metabolism.
Abstract: We investigated the molecular events involved in the long-lasting reduction of adipose mass by the selective CB1 antagonist, SR141716. Its effects were assessed at the transcriptional level both in white (WAT) and brown (BAT) adipose tissues in a diet-induced obesity model in mice. Our data clearly indicated that SR141716 reversed the phenotype of obese adipocytes at both macroscopic and genomic levels. First, oral treatment with SR141716 at 10 mg/kg/d for 40 days induced a robust reduction of obesity, as shown by the 50% decrease in adipose mass together with a major restoration of white adipocyte morphology similar to lean animals. Second, we found that the major alterations in gene expression levels induced by obesity in WAT and BAT were mostly reversed in SR141716-treated obese mice. Importantly, the transcriptional patterns of treated obese mice were similar to those obtained in the CB1 receptor knockout mice fed a high-fat regimen and which are resistant to obesity, supporting a CB1 receptor-mediated process. Functional analysis of these modulations indicated that the reduction of adipose mass by the molecule resulted from an enhanced lipolysis through the induction of enzymes of the beta-oxidation and TCA cycle, increased energy expenditure, mainly through futile cycling (calcium and substrate), and a tight regulation of glucose homeostasis. These changes accompanied a significant cellular remodeling and contributed to a reduction of the obesity-related inflammatory status. In addition to a transient reduction of food consumption, increases of both fatty acid oxidation and energy expenditure induced by the molecule summate leading to a sustained weight loss. Altogether, these data strongly indicate that the endocannabinoid system has a major role in the regulation of energy metabolism.

Journal ArticleDOI
TL;DR: The widespread expression of a cutaneous seorotoninergic/melatoninergic system indicates considerable selectivity of action to facilitate intra‐, auto‐, or paracrine mechanisms that define and influence skin function in a highly compartmentalized manner.
Abstract: It was recently discovered that mammalian skin can produce serotonin and transform it into melatonin. Pathways for the biosynthesis and biodegradation of serotonin and melatonin have been characterized in human and rodent skin and in their major cellular populations. Moreover, receptors for serotonin and melatonin receptors are expressed in keratinocytes, melanocytes, and fibroblasts and these mediate phenotypic actions on cellular proliferation and differentiation. Melatonin exerts receptor-independent effects, including activation of pathways protective of oxidative stress and the modification of cellular metabolism. While serotonin is known to have several roles in skin-e.g., pro-edema, vasodilatory, proinflammatory, and pruritogenic-melatonin has been experimentally implicated in hair growth cycling, pigmentation physiology, and melanoma control. Thus, the widespread expression of a cutaneous seorotoninergic/melatoninergic syste,m(s) indicates considerable selectivity of action to facilitate intra-, auto-, or paracrine mechanisms that define and influence skin function in a highly compartmentalized manner. Notably, the cutaneous melatoninergic system is organized to respond to continuous stimulation in contrast to the pineal gland, which (being insulated from the external environment) responds to discontinuous activation by the circadian clock. Overall, the cutaneous serotoninergic/melatoninergic system could counteract or buffer external (environmental) or internal stresses to preserve the biological integrity of the organ and to maintain its homeostasis.-Slominski, A. J., Wortsman, J., Tobin, D. J. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun.

Journal ArticleDOI
TL;DR: Results for the first time suggest that IFN‐γ produces a leaky epithelial barrier by inducing macropinoytosis of TJ proteins.
Abstract: Increased epithelial permeability is observed in inflammatory states. However, the mechanism by which inflammatory mediators such as IFN-gamma increase epithelial permeability is unknown. We recently observed that IFN-gamma induces disassembly of tight junctions (TJ); in this study we asked whether such TJ disassembly is mediated by endocytosis of junctional proteins. The role of three major internalization pathways in disruption of TJ in IFN-gamma-treated intestinal epithelial cells was analyzed using selective inhibitors and markers of the pathways. No role for the clathrin- and caveolar-mediated endocytosis in the IFN-gamma-induced internalization of TJ proteins was observed. However, inhibitors of macropinocytosis blocked internalization of TJ proteins and junctional proteins colocalized with macropinocytosis markers, dextran and phosphatidylinositol-3,4,5-trisphosphate. Internalized TJ proteins were identified in early and recycling endosomes but not in late endosomes/lysosomes. These results for the first time suggest that IFN-gamma produces a leaky epithelial barrier by inducing macropinoytosis of TJ proteins.

Journal ArticleDOI
TL;DR: The current review aims to position nutrigenomics and Nutrigenetics as the emerging faces of nutrition that, when considered with more classical approaches, will provide the necessary stepping stones to achieve the ambitious goal of optimizing an individual's health via nutritional intervention.
Abstract: The recognition that nutrients have the ability to interact and modulate molecular mechanisms underlying an organism's physiological functions has prompted a revolution in the field of nutrition. Performing population-scaled epidemiological studies in the absence of genetic knowledge may result in erroneous scientific conclusions and misinformed nutritional recommendations. To circumvent such issues and more comprehensively probe the relationship between genes and diet, the field of nutrition has begun to capitalize on both the technologies and supporting analytical software brought forth in the post-genomic era. The creation of nutrigenomics and nutrigenetics, two fields with distinct approaches to elucidate the interaction between diet and genes but with a common ultimate goal to optimize health through the personalization of diet, provide powerful approaches to unravel the complex relationship between nutritional molecules, genetic polymorphisms, and the biological system as a whole. Reluctance to embrace these new fields exists primarily due to the fear that producing overwhelming quantities of biological data within the confines of a single study will submerge the original query; however, the current review aims to position nutrigenomics and nutrigenetics as the emerging faces of nutrition that, when considered with more classical approaches, will provide the necessary stepping stones to achieve the ambitious goal of optimizing an individual's health via nutritional intervention.

Journal ArticleDOI
TL;DR: The results emphasize the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging, and the accumulation of oxidant‐induced damage in IFM.
Abstract: SPECIFIC AIMSMitochondrial dysfunction and the accumulation of oxidative damage to macromolecules are believed to play key roles in the aging process According to the mitochondrial theory of aging

Journal ArticleDOI
TL;DR: It is demonstrated that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo, and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.
Abstract: The discovery of multipotent neural progenitor (NP) cells has provided strong support for the existence of neurogenesis in the adult brain. However, the signals controlling NP proliferation remain elusive. Endocannabinoids, the endogenous counterparts of marijuana-derived cannabinoids, act as neuromodulators via presynaptic CB1 receptors and also control neural cell death and survival. Here we show that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo. Specifically, NPs produce endocannabinoids and express the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase (FAAH). CB1 receptor activation promotes cell proliferation and neurosphere generation, an action that is abrogated in CB1-deficient NPs. Accordingly, proliferation of hippocampal NPs is increased in FAAH-deficient mice. Our results demonstrate that endocannabinoids constitute a new group of signaling cues that regulate NP proliferation and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.

Journal ArticleDOI
TL;DR: A high‐fat diet induces liver injury in fa/fa rats leading to periportal fibrosis and a role for oxidative stress is suggested via increased NADPH oxidase activity, lipid peroxidation, protein carbonyl formation, and low antioxidant defense.
Abstract: Fatty livers of obese fa/fa rats are vulnerable to injury when challenged by insults such as endotoxin, ischemia-reperfusion or acute ethanol treatment. The objective of this study was to evaluate whether a high-fat diet can act as a "second hit" and cause progression to liver injury in obese fa/fa rats compared with lean Fa/? rats. Accordingly, obese fa/fa rats and their lean littermates were fed a diet low in fat (12% of total calories) or a diet with 60% calories as lard for 8 weeks. Hyperglycemia and steatohepatitis occurred in the fa/fa rats fed the high-fat diet. This was accompanied by liver injury as assessed by alanine aminotransferase, hematoxilin and eosin staining, increased TNFalpha and stellate cell-derived TGFbeta, collagen deposition, and up-regulation of alpha-smooth muscle actin. Active MMP13 decreased in fa/fa rats independently of the diet, and TIMP1 expression increased with the high-fat diet, especially in fa/fa rats. Although UCP2 expression was higher in fa/fa rats regardless of the diet, minor changes in ATP levels were observed. Oxidative stress occurred in the fa/fa rats fed the high-fat diet as lipid peroxidation and protein carbonyls were elevated, while glutathione and antioxidant enzymes were very low. Expression and activity of cytochrome P450 2E1 and xanthine oxidase activity were down-regulated in fa/fa compared with Fa/? rats, and no effect was seen by the high-fat diet. However, NADPH oxidase activity increased 2.5-fold in fa/fa rats fed with the high-fat diet. In summary, a high-fat diet induces liver injury in fa/fa rats leading to periportal fibrosis. A role for oxidative stress is suggested via increased NADPH oxidase activity, lipid peroxidation, protein carbonyl formation, and low antioxidant defense.

Journal ArticleDOI
TL;DR: The results obtained show that both under cell‐free conditions and in the presence of cells the oxidant activities of GTE and EGCG exceeded those of spontaneously generated H2O2 (FOX assay), and suggest that detailed mechanistic studies on the effects of GTe and E GCG should be performed in vivo before excessive intake and/ or topical application of green tea products can be recommended to healthy and/or diseased persons.
Abstract: Green tea is the most widely consumed beverage. It has attained high reputation as a health-promoting dietary component ascribed to the antioxidant activity of (-)-epigallocatechin-3-gallate (EGCG), its main polyphenolic constituent. Evidence is increasing that tea constituents can be cell damaging and pro-oxidant themselves. These effects were suggested to be due to spontaneous H2O2 generation by polyphenols in solution. In the present study, we investigated the oxidant and antioxidant properties of green tea extracts (GTE) and of EGCG by means of the rodent macrophage-like RAW 264.7 and human promyelocytic leukemic HL60 cell lines. The results obtained show that both under cell-free conditions and in the presence of cells the oxidant activities of GTE and EGCG exceeded those of spontaneously generated H2O2 (FOX assay). Increase of intracellular oxidative stress was indicated by 2',7'-dichlorofluorescin probing, and the enhanced genotoxicity was demonstrated by the alkaline comet assay and by the micronucleus assay (cytokinesis block). Time- and dose-dependent induction of cell death was monitored by trypan blue exclusion, MTT assay, and Hoechst staining. Furthermore, in our systems in vitro, EGCG neither directly scavenges H2O2 nor mediates other antioxidant activities but rather increased H2O2-induced oxidative stress and DNA damage. In conclusion, our data suggest that detailed mechanistic studies on the effects of GTE and EGCG should be performed in vivo before excessive intake and/or topical application of green tea products can be recommended to healthy and/or diseased persons.