scispace - formally typeset
Search or ask a question

Showing papers in "The Journal of Experimental Biology in 1996"


Journal ArticleDOI
TL;DR: A hypothesis of how the path integration system may operate at the neuronal level is proposed, and it appears that viewpoint-specific visual information becomes secondarily bound to this structure by associative learning.
Abstract: Hippocampal 'place' cells and the head-direction cells of the dorsal presubiculum and related neocortical and thalamic areas appear to be part of a preconfigured network that generates an abstract internal representation of two-dimensional space whose metric is self-motion. It appears that viewpoint-specific visual information (e.g. landmarks) becomes secondarily bound to this structure by associative learning. These associations between landmarks and the preconfigured path integrator serve to set the origin for path integration and to correct for cumulative error. In the absence of familiar landmarks, or in darkness without a prior spatial reference, the system appears to adopt an initial reference for path integration independently of external cues. A hypothesis of how the path integration system may operate at the neuronal level is proposed.

822 citations


Journal ArticleDOI
TL;DR: The movement-sensitive mechanisms underlying these various behaviours seem to be different, qualitatively as well as quantitatively, from those mediating the well-investigated optomotor response.
Abstract: Recent research has uncovered a number of different ways in which bees use cues derived from optic flow for navigational purposes. The distance flown to a food source is gauged by integrating the apparent motion of the visual world that is experienced en route. In other words, bees possess a visually driven 'odometer' that is robust to variations in wind load and energy expenditure. Bees flying through a tunnel maintain equidistance to the flanking walls by balancing the apparent speeds of the images of the walls. This strategy enables them to negotiate narrow passages or to fly between obstacles. The speed of flight in a tunnel is controlled by holding constant the average image velocity as seen by the two eyes. This avoids potential collisions by ensuring that the bee slows down when flying through narrow passages. Bees landing on a horizontal surface hold constant the image velocity of the surface as they approach it. This automatically ensures that flight speed decreases with altitude and is close to zero at touchdown. The movement-sensitive mechanisms underlying these various behaviours seem to be different, qualitatively as well as quantitatively, from those mediating the well-investigated optomotor response.

630 citations


Journal ArticleDOI
TL;DR: The flexible use of vectors, snapshots and landmark-based routes suffices to interpret the insect's behaviour and the cognitive-map approach in particular and the representational paradigm in general are discussed.
Abstract: Social hymenopterans such as bees and ants are central-place foragers; they regularly depart from and return to fixed positions in their environment. In returning to the starting point of their foraging excursion or to any other point, they could resort to two fundamentally different ways of navigation by using either egocentric or geocentric systems of reference. In the first case, they would rely on information continuously collected en route (path integration, dead reckoning), i.e. integrate all angles steered and all distances covered into a mean home vector. In the second case, they are expected, at least by some authors, to use a map-based system of navigation, i.e. to obtain positional information by virtue of the spatial position they occupy within a larger environmental framework. In bees and ants, path integration employing a skylight compass is the predominant mechanism of navigation, but geocentred landmark-based information is used as well. This information is obtained while the animal is dead-reckoning and, hence, added to the vector course. For example, the image of the horizon skyline surrounding the nest entrance is retinotopically stored while the animal approaches the goal along its vector course. As shown in desert ants (genus Cataglyphis), there is neither interocular nor intraocular transfer of landmark information. Furthermore, this retinotopically fixed, and hence egocentred, neural snapshot is linked to an external (geocentred) system of reference. In this way, geocentred information might more and more complement and potentially even supersede the egocentred information provided by the path-integration system. In competition experiments, however, Cataglyphis never frees itself of its homeward-bound vector - its safety-line, so to speak - by which it is always linked to home. Vector information can also be transferred to a longer-lasting (higher-order) memory. There is no need to invoke the concept of the mental analogue of a topographic map - a metric map - assembled by the insect navigator. The flexible use of vectors, snapshots and landmark-based routes suffices to interpret the insect's behaviour. The cognitive-map approach in particular, and the representational paradigm in general, are discussed.

625 citations


Journal ArticleDOI
TL;DR: The mechanisms underlying all aspects of salmon homing are reviewed but the final, freshwater phase governed by olfactory recognition of homestream water is focused on.
Abstract: Pacific salmon (Oncorhynchus spp.) are famous for their homing migrations from oceanic feeding grounds to their natal river to spawn. During these migrations, salmon travel through diverse habitats (e.g. oceans, lakes, rivers), each offering distinct orientation clues and, perhaps, requiring distinct sensory capabilities for navigation. Despite these challenges, homing is generally precise and this philopatry has resulted in reproductively isolated spawning populations with specialized adaptations for their natal habitat. This paper reviews the mechanisms underlying all aspects of salmon homing but emphasizes the final, freshwater phase governed by olfactory recognition of homestream water. Prior to their seaward migration, juvenile salmon learn (imprint on) odors associated with their natal site and later, as adults, use these odor memories for homing. Our understanding of this imprinting process is derived primarily from studies using artificial odorants and hatchery-reared salmon. Recent findings suggest, however, that such studies may underestimate the complexity of the imprinting process in nature.

613 citations


Journal ArticleDOI
TL;DR: It has been proposed that, in first-year migrants, the time programme for autumn migration plays a major role in determining migratory distance, thus providing the vector component in a mechanism of vector navigation.
Abstract: In migratory birds, endogenous daily (circadian) and annual (circannual) rhythms serve as biological clocks that provide the major basis for their temporal orientation. Circannual rhythms are responsible for the initiation of migration both in autumn and spring. This function of timing migrations is particularly important for birds that spend the winter close to the equator where the environment is too constant or irregular to provide accurate timing cues. In addition, circannual rhythms produce programmes that determine both the temporal and the spatial course of migration. In Sylvia warblers, the time programmes controlling autumn migration are organized in a species- or population-specific manner. It has been proposed that, in first-year migrants, the time programme for autumn migration plays a major role in determining migratory distance, thus providing the vector component in a mechanism of vector navigation. It is not yet clear, however, whether this programme does indeed determine migratory distance or whether it only provides the temporal framework within which other factors determine how far a bird flies. Evidence against the first alternative comes from findings indicating that migratory activity can be drastically modified by a constellation of rather specific, but highly relevant, factors and that the resulting changes in migratory activity are not compensated by subsequent increases or decreases of migratory activity. In normally day-active but nocturnally migrating birds, circannual signals cause alterations in the circadian system leading to the development of nocturnal activity. Although the nature of these signals is unknown, there is evidence that changes in the diurnal pattern of melatonin secretion by the pineal gland are associated with, and possibly causally involved in, the waxing and waning of nocturnal activity. These changes in the melatonin pattern presumably also affect general synchronization properties of the circadian system to Zeitgebers in such a way that circadian rhythms adjust faster to new conditions after long transmeridian flights.

431 citations


Journal ArticleDOI
TL;DR: The extent to which path integration and familiar visual cues cooperate to optimize the navigational performance is investigated, with a focus on nocturnal species such as hamsters and mice.
Abstract: During locomotion, mammals update their position with respect to a fixed point of reference, such as their point of departure, by processing inertial cues, proprioceptive feedback and stored motor commands generated during locomotion. This so-called path integration system (dead reckoning) allows the animal to return to its home, or to a familiar feeding place, even when external cues are absent or novel. However, without the use of external cues, the path integration process leads to rapid accumulation of errors involving both the direction and distance of the goal. Therefore, even nocturnal species such as hamsters and mice rely more on previously learned visual references than on the path integration system when the two types of information are in conflict. Recent studies investigate the extent to which path integration and familiar visual cues cooperate to optimize the navigational performance.

379 citations


Journal ArticleDOI
TL;DR: It is argued that no animal has been conclusively shown to have a cognitive map, sensu Tolman, O'Keefe and Nadel, because simpler explanations of the crucial novel short-cutting results are invariably possible.
Abstract: Drawing on studies of humans, rodents, birds and arthropods, I show that 'cognitive maps' have been used to describe a wide variety of spatial concepts. There are, however, two main definitions. One, sensu Tolman, O'Keefe and Nadel, is that a cognitive map is a powerful memory of landmarks which allows novel short-cutting to occur. The other, sensu Gallistel, is that a cognitive map is any representation of space held by an animal. Other definitions with quite different meanings are also summarised. I argue that no animal has been conclusively shown to have a cognitive map, sensu Tolman, O'Keefe and Nadel, because simpler explanations of the crucial novel short-cutting results are invariably possible. Owing to the repeated inability of experimenters to eliminate these simpler explanations over at least 15 years, and the confusion caused by the numerous contradictory definitions of a cognitive map, I argue that the cognitive map is no longer a useful hypothesis for elucidating the spatial behaviour of animals and that use of the term should be avoided.

308 citations


Book ChapterDOI
TL;DR: The magnetic field of the earth is an omnipresent, reliable source of orientational information, and birds from the northern and southern hemisphere may rely on the same migratory programme, while the role of magnetic parameters in the multifactorial navigational system is poorly understood.
Abstract: The magnetic field of the earth provides a very reliable, omnipresent source of spatial information for all living beings. For animals, perceiving the field lines of the geomagnetic field results in an anisotropy of space: the various directions do not appear equal but can be distinguished. The magnetic field structures space in the horizontal just like the gravity field structures space in the vertical by allowing the discrimination of “up” and “down.” At the same time, total intensity and inclination of the geomagnetic field vary in space in a way that is roughly correlated with geographic latitude, so that the ambient values contain information about geographic position on the earth.

294 citations


Journal ArticleDOI
TL;DR: The results of this study illustrate that a suite of morphological, physiological and biochemical features allows P. cinctipes to live higher in the intertidal region than P. eriomerus, and suggests that the leg membrane functions as a respiratory structure.
Abstract: We examined physiological and biochemical responses to temperature and aerial exposure in two species of intertidal porcelain crabs (genus Petrolisthes) that inhabit discrete vertical zones. On the shores of the Northeastern Pacific, P. cinctipes (Randall) occurs under rocks and in mussel beds in the mid to high intertidal zone and P. eriomerus (Stimpson) occurs under rocks in the low intertidal zone and subtidally to 80 m. Because of their different vertical distributions, these two species experience very different levels of abiotic stress. Individuals of P. cinctipes can be emersed during every low tide, but P. eriomerus is only emersed during the lowest spring tides and on most days is not emersed at all. Temperatures measured underneath rocks in the mid intertidal zone were as high as 31 dC, 15 dC higher than maximal temperatures measured under rocks in the low intertidal zone. In air, at 25 dC, large specimens of P. cinctipes were able to maintain a higher respiration rate than similarly sized P. eriomerus. No interspecific differences in the respiratory response to emersion were seen in small specimens. Examination of the response of heart rate to temperature revealed that P. cinctipes has a 5 dC higher Arrhenius break temperature (ABT, the temperature at which there is a discontinuity in the slope of an Arrhenius plot) than its congener (31.5 dC versus 26.6 dC). The heart rate of P. cinctipes recovered fully after exposure to cold (1.5 dC), but the heart rate of P. eriomerus did not recover after exposure to 2 dC or cooler. The ABT of heart rate in P. cinctipes was very close to maximal microhabitat temperatures; thus, individuals of this species may be living at or near their thermal tolerance limits. P. cinctipes were able to maintain aerobic metabolism during emersion, whereas P. eriomerus shifted to anaerobic metabolism. A pronounced accumulation of whole-body lactate was found in specimens of P. eriomerus incubated in air at 25 dC over a 5 h period, but not in P. cinctipes similarly treated. P. cinctipes possesses a membranous structure on the ventral merus of each walking leg, but this structure is not found in P. eriomerus. To test the function of the leg membrane, we measured the aerial respiration rates and the lactate accumulation of P. cinctipes with their leg membranes obscured. These individuals had significantly lower aerial respiration rates at 30 dC than control crabs. Crabs with leg membranes obscured also accumulated a considerable amount of lactate during a 5 h period of emersion at 28 dC, but control crabs showed no accumulation under the same conditions. These data suggest that the leg membrane functions as a respiratory structure. The results of this study illustrate that a suite of morphological, physiological and biochemical features allows P. cinctipes to live higher in the intertidal region than P. eriomerus.

262 citations


Journal ArticleDOI
TL;DR: An 'adverse-scaling' hypothesis is proposed in which it is proposed that the ability to reduce metabolic and mechanical power output using flap-bounding flight at fast flight speeds is scaled negatively with body mass.
Abstract: To investigate how birds that differ in morphology change their wing and body movements while flying at a range of speeds, we analyzed high-speed (60 Hz) video tapes of black-billed magpies (Pica pica) flying at speeds of 4-14 m s-1 and pigeons (Columba livia) flying at 6-20 m s-1 in a wind-tunnel. Pigeons had higher wing loading and higher-aspect-ratio wings compared with magpies. Both species alternated phases of steady-speed flight with phases of acceleration and deceleration, particularly at intermediate flight speeds. The birds modulated their wingbeat kinematics among these phases and frequently exhibited non-flapping phases while decelerating. Such modulation in kinematics during forward flight is typical of magpies but not of pigeons in the wild. The behavior of the pigeons may have been a response to the reduced power costs for flight in the closed wind-tunnel relative to those for free flight at similar speeds. During steady-speed flight, wingbeat frequency did not change appreciably with increasing flight speed. Body angle relative to the horizontal, the stroke-plane angles of the wingtip and wrist relative to the horizontal and the angle describing tail spread at mid-downstroke all decreased with increasing flight speed, thereby illustrating a shift in the dominant function of wing flapping from weight support at slow speeds to positive thrust at fast speeds. Using wingbeat kinematics to infer lift production, it appeared that magpies used a vortex-ring gait during steady-speed flight at all speeds whereas pigeons used a vortex-ring gait at 6 and 8 m s-1, a transitional vortex-ring gait at 10 m s-1, and a continuous-vortex gait at faster speeds. Both species used a vortex-ring gait for acceleration and a continuous-vortex gait or a non-flapping phase for deceleration during flight at intermediate wind-tunnel speeds. Pigeons progressively flexed their wings during glides as flight speed increased but never performed bounds. Wingspan during glides in magpies did not vary with flight speed, but the percentage of bounds among non-flapping intervals increased with speed from 10 to 14 m s-1. The use of non-flapping wing postures seemed to be related to the gaits used during flapping and to the aspect ratio of the wings. We develop an 'adverse-scaling' hypothesis in which it is proposed that the ability to reduce metabolic and mechanical power output using flap-bounding flight at fast flight speeds is scaled negatively with body mass. This represents an alternative to the 'fixed-gear' hypothesis previously suggested by other authors to explain the use of intermittent flight in birds. Future comparative studies in the field would be worthwhile, especially if instantaneous flight speeds and within-wingbeat kinematics were documented; new studies in the laboratory should involve simultaneous recording of wing kinematics and aerodynamic forces on the wing.

246 citations


Journal ArticleDOI
TL;DR: The aerodynamic characteristics of the wings and body of a dragonfly and of artificial wing models were studied by conducting two types of wind-tunnel tests and a number of free-flight tests of gliders made using dragonfly wings.
Abstract: The aerodynamic characteristics of the wings and body of a dragonfly and of artificial wing models were studied by conducting two types of wind-tunnel tests and a number of free-flight tests of gliders made using dragonfly wings. The results were consistent between these different tests. The effects of camber, thickness, sharpness of the leading edge and surface roughness on the aerodynamic characteristics of the wings were characterized in the flow field with Reynolds numbers (Re) as low as 103 to 104.

Journal ArticleDOI
TL;DR: Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: the reorientation of threads towards the direction of applied load, and the 'recruitment' of more threads into tension and the consequent distribution of appliedload over a larger cross-sectional area, thereby reducing the stress on each thread.
Abstract: The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

Journal ArticleDOI
TL;DR: Results show that leucokinin acts through intracellular Ca2+, independently of cyclic AMP or cyclic GMP, to raise the chloride permeability of the epithelium, and there is a clear functional separation between the control pathways acting on cation and anion transport in the tubules.
Abstract: Microelectrode measurements of basal, apical and transepithelial potentials in the Malpighian tubules of Drosophila melanogaster were obtained under a range of conditions in order to investigate whether each of the three main second messenger systems known to act in the tubules (cyclic AMP, cyclic GMP and Ca2+) acted specifically on either cation or anion transport, or whether they activated both systems. Ion-selective microelectrode determinations of K+ concentration and pH of secreted fluid allowed the role of each signalling system to be analysed further. Stimulation with cyclic nucleotides markedly alters the potential profile across principal cells through the selective activation of an apical electrogenic V-ATPase. By contrast, manipulation of extracellular chloride levels, combined with stimulation with leucokinin, does not affect the potential profile across the principal cells, showing that chloride must pass through another route. The cell-permeant Ca2+ chelator BAPTA-AM was shown to suppress the action of leucokinins (insect peptides that induce rapid fluid secretion), but not those of cyclic AMP, the neuronally derived insect peptide cardioacceleratory peptide 2b (CAP2b) or its intracellular messenger cyclic GMP. This shows that leucokinins act through Ca2+ and not through cyclic nucleotides and that the cyclic nucleotide pathways do not co-activate the intracellular Ca2+ pathway to exert their effects. Taken together, these results show that leucokinin acts through intracellular Ca2+, independently of cyclic AMP or cyclic GMP, to raise the chloride permeability of the epithelium. By contrast, either cyclic AMP or cyclic GMP (upon CAP2b stimulation) acts on the electrogenic cation-transporting apical V-ATPase, with only a negligible effect on anion conductance and without perturbing intracellular [Ca2+]. There is thus a clear functional separation between the control pathways acting on cation and anion transport in the tubules. Given the evidence from D. melanogaster and other species that chloride does not pass through the principal cells, we speculate that these two pathways may also be physically separated within cell subtypes of the tubules.

Journal ArticleDOI
TL;DR: These findings represent the best evidence to date that the amount of a heat-shock protein affects the fitness of a complex animal in the wild.
Abstract: To determine how the accumulation of the major Drosophila melanogaster heat-shock protein, Hsp70, affects inducible thermotolerance in larvae and pupae, we have compared two sister strains generated by site-specific homologus recombination. One strain carried 12 extra copies of the Hsp70 gene at a single insertion site (extra-copy strain) and the other carried remnants of the transgene construct but lacked the extra copies of Hsp70 (excision strain). Hsp70 levels in whole-body lysates of larvae and pupae were measured by ELISA with an Hsp70-specific antibody. In both extra-copy and excision strains, Hsp70 was undetectable prior to heat shock. Hsp70 concentrations were higher in the extra-copy strain than in the excision strain at most time points during and after heat shock. Pretreatment (i.e. exposure to 36 degrees C before heat shock) significantly improved thermotolerance, and this improvement was greater and more rapid in larvae and pupae of the extra-copy strain than in those of the excision strain. The experimental conditions resemble thermal regimes actually experienced by Drosophila in the field. Thus, these findings represent the best evidence to date that the amount of a heat-shock protein affects the fitness of a complex animal in the wild.

Journal ArticleDOI
TL;DR: This study operantly conditioned the aerial respiratory behaviour of the freshwater snail Lymnaea stagnalis and provides the first direct evidence for operant conditioning of respiration in any animal.
Abstract: In this study, we operantly conditioned the aerial respiratory behaviour of the freshwater snail Lymnaea stagnalis. Aerial respiration in Lymnaea stagnalis is accomplished by the spontaneous opening and closing of its respiratory orifice, the pneumostome, at the water surface. Weak tactile stimulation of the pneumostome area, when the pneumostome is open, evoked only the pneumostome closure response, which is one aspect of the escape-withdrawal reflex. Pneumostome stimulation resulted in its closure and the termination of aerial respiratory activity. A contingent tactile stimulation paradigm was used to operantly condition the animals. Stimulation of the pneumostome whenever the animal attempted to breathe resulted in significantly fewer attempts to open the pneumostome as training progressed. The latency of the first breath (subsequent to stimulation), the number of breaths and the total breathing time were measured before and after each training period. Significant, quantifiable changes in these behavioural parameters were observed only in the operant conditioning group animals. Control animals receiving tactile stimulation to their pneumostome not contingent upon pneumostome opening movements (yoked controls) or those that were physically prevented from surfacing to breathe (hypoxic controls), did not exhibit significant changes in these behavioural parameters. Our data provide the first direct evidence for operant conditioning of respiration in any animal.

Journal ArticleDOI
TL;DR: To circumvent energetic and water-balance problems, a bird could migrate in short hops instead of long leaps if crossing of large ecological barriers can be avoided, and migration by long leaps may sometimes be faster than by short hops.
Abstract: The flight range of migrating birds depends crucially on the amount of fuel stored by the bird prior to migration or taken up en route at stop-over sites. However, an increase in body mass is associated with an increase in energetic costs, counteracting the benefit of fuel stores. Water imbalance, occurring when water loss exceeds metabolic water production, may constitute another less well recognised problem limiting flight range. The main route of water loss during flight is via the lungs; the rate of loss depends on ambient temperature, relative humidity and ventilatory flow and increases with altitude. Metabolite production results in an increased plasma osmolality, also endangering the proper functioning of the organism during flight. Energetic constraints and water-balance problems may interact in determining several aspects of flight behaviour, such as altitude of flight, mode of flight, lap distance and stop-over duration. To circumvent energetic and water-balance problems, a bird could migrate in short hops instead of long leaps if crossing of large ecological barriers can be avoided. However, although necessitating larger fuel stores and being more expensive, migration by long leaps may sometimes be faster than by short hops. Time constraints are also an important factor in explaining why soaring, which conserves energy and water, occurs exclusively in very large species: small birds can soar at low speeds only. Good navigational skills involving accurate orientation and assessment of altitude and air and ground speed assist in avoiding physiological stress during migration.

Journal ArticleDOI
TL;DR: Based on a brief description of the general brain morphology of Camponotus floridanus, development of the brain is examined in ants of different ages, and the volume of the mushroom body neuropile increases as a consequence of behavioural activity associated with brood care and foraging.
Abstract: Based on a brief description of the general brain morphology of Camponotus floridanus, development of the brain is examined in ants of different ages (pupa to 10 months). During this period, brain volume increases by approximately 20 % while the antennal lobes and the mushroom body neuropile show a more substantial growth, almost doubling their volume. In addition to the age-dependent changes, the volume of the mushroom body neuropile also increases as a consequence of behavioural activity associated with brood care and foraging. Foraging activity may lead to a more than 50 % additional increase in mushroom body neuropile volume. It is unlikely that the growth of mushroom body neuropile results from cell proliferation because no neurogenesis could be observed in adult ant brains.

Journal ArticleDOI
TL;DR: Simulations suggest that the stereotyped trajectories of individual ants can be modelled by a weighted combination of dead reckoning, biased detours and beacon-aiming, which may suffice to account for the routes taken by desert ants through a landmark-strewn environment.
Abstract: There are at least four distinct ways in which familiar landmarks aid an insect on its trips between nest and foraging site. Recognising scenes: when bees are displaced unexpectedly from their hive to one of several familiar locations, they are able to head in the direction of home as though they had previously linked an appropriate directional vector to a view of the scene at the release site. Biased detours: ants recognise familiar landmarks en route and will correct their path by steering consistently to the left or to the right around them. Aiming at beacons: bees and ants also guide their path by approaching familiar landmarks lying on or close to the direct line between start and finish. Simulations suggest that such mechanisms acting together may suffice to account for the routes taken by desert ants through a landmark-strewn environment: the stereotyped trajectories of individual ants can be modelled by a weighted combination of dead reckoning, biased detours and beacon-aiming. These mechanisms guide an insect sufficiently close to an inconspicuous goal for image matching to be successfully employed to locate it. Insects then move until their current retinal image matches a stored view of the surrounding panorama seen from a vantage point close to the goal. Bees and wasps perform learning flights on their first departure from a site to which they will return. These flights seem to be designed to pick up the information needed for several navigational strategies. Thus, a large portion of the learning flight of a bee leaving a feeder tends to be spent close to the feeder so aiding the acquisition of a view from that vantage point, as is needed for image matching. Bees and social wasps also tend to inspect their surroundings while facing along preferred directions and to adopt similar bearings before landing, thereby making it easy to employ retinotopically stored patterns in image matching. Aiming at beacons, in contrast, requires a landmark to be familiar to the frontal retina. Objects tend to be viewed frontally while the insect circles through arcs centred on the goal. This procedure may help insects to pick out those objects close to the goal that are best suited for guiding later returns.

Journal ArticleDOI
TL;DR: An 'optical flow hypothesis': bees use the speed of retinal image motion perceived from the ground to estimate the distance flown, because flight altitude is important for distance estimation by Retinal image flow, because objects move faster and farther across the retina when the bee flies closer to the ground.
Abstract: Honeybees are widely believed to assess feeder distances by the energy spent on foraging flights. However, a critical review of this 9energy hypothesis9 reveals many inconsistencies in the experiments from which it was derived. In fact, new evidence shows that the energy hypothesis cannot be correct. Foragers loaded with weights do not overestimate distance, as indicated by their waggle dances performed upon return to the hive. Bees that climb to a feeder on top of a high building (50 m) signal the same distance as hive mates that visit an equidistant feeder at ground level. Foragers visiting a feeder suspended from a balloon at 70 m from their hive underestimate the distance flown dramatically when the balloon lifts the feeder from ground level to 90 m, even though the energy required to reach the feeder increases considerably. Foragers from a hive situated on a high building (50 m) that fly to a feeder on the roof of another high building (34 m) signal a much shorter distance than the actual distance flown. We propose instead an 9optical flow hypothesis9: bees use the speed of retinal image motion perceived from the ground to estimate the distance flown. Flight altitude is important for distance estimation by retinal image flow, because objects move faster and farther across the retina when the bee flies closer to the ground. When the forager9s flight behavior is considered, the optical flow hypothesis does not conflict with previous findings.

Journal ArticleDOI
TL;DR: This review emphasizes important structural and functional features of proton-secreting cells, describes the tissue distribution of these cells and discusses the known functions ofThese cells in their respective epithelia.
Abstract: Several transporting epithelia in vertebrates and invertebrates contain cells that are specialized for proton or bicarbonate secretion. These characteristic 'mitochondria-rich' (MR) cells have several typical features, the most important of which is an extremely high expression of a vacuolar-type proton-pumping ATPase (H+V-ATPase) both on intracellular vesicles and on specific domains of their plasma membrane. Physiological modulation of proton secretion is achieved by recycling the H+V-ATPase between the plasma membrane and the cytoplasm in a novel type of nonclathrin-coated vesicle. In the kidney, these cells are involved in urinary acidification, while in the epididymis and vas deferens they acidify the luminal environment to allow normal sperm development. Osteoclasts are non-epithelial MR cells that use H+V-ATPase activity for bone remodeling. In some insects, similar cells in the midgut energize K+ secretion by means of a plasma membrane H+V-ATPase. This review emphasizes important structural and functional features of proton-secreting cells, describes the tissue distribution of these cells and discusses the known functions of these cells in their respective epithelia.

Journal ArticleDOI
TL;DR: The various efflux protocols produced varying estimates of tissue Ca2+ levels and calcification rates and, thus, coral post-incubation processing has a profound impact on experimental interpretation.
Abstract: Ca2+ compartments, Ca2+ transport and the calcification process were studied by using 45Ca as a tracer. The biological model used was clones of Stylophora pistillata developed into microcolonies whose skeleton is entirely covered by tissues, thus avoiding direct radioisotope exchange between the sea water and the skeleton. The study of Ca2+ compartments was performed by measuring two complementary parameters: Ca2+ influx and Ca2+ efflux kinetics. Kinetic analysis of 45Ca uptake revealed three exchangeable and one non-exchangeable Ca2+ compartments in these microcolonies. The first compartment was saturable with a short half-time (4 min), correlated to external Ca2+ concentration and insensitive to metabolic or ion transport inhibitors. This compartment (72.88 nmol Ca2+ mg-1 protein) has been previously attributed to sea water present in the coelenteron. The second Ca2+ compartment (7.12 nmol Ca2+ mg-1 protein) was soluble in NaOH, saturable with a half-time of 20 min and displayed a combination of Michaelis-Menten kinetics and diffusional entry. It was insensitive to a variety of inhibitors but its loading was stimulated by Ca2+ channel inhibitors. On the basis of uptake experiments, the existence of a third compartment with a rapid turnover rate (about 2 min) and a very small size is predicted. It is suggested that this compartment corresponds to the calicoblastic epithelium. Ca2+ flux through this compartment was facilitated by voltage-dependent Ca2+ channels (with L-type characteristics) and Ca2+-ATPase and was coupled to an anion carrier. Transcellular Ca2+ movement was dependent on the cytoskeleton. The rate of Ca2+ flux across this epithelium was about 975 pmol mg-1 protein min-1. The fourth calcium compartment, corresponding to the skeleton, was soluble in HCl and non-exchangeable. After a short lag phase (about 2 min), the rate of Ca2+ deposition was linear over a period of at least 5 h. The calcification rate was 975 pmol mg-1 protein h-1 at an irradiance of 175 µmol photons m-2 s-1. It followed Michaelis-Menten kinetics and saturated at levels (9 mmol l-1) close to the Ca2+ concentration of sea water. Wash-out (efflux) experiments employing several different protocols allowed identification of six compartments. The first two compartments were extracellular (bulk extracolonial water and coelenteron). The third compartment may be part of the second Ca2+ compartment identified by influx experiments. A fourth compartment was sensitive to the Ca2+ channel inhibitor D600 and appeared to be associated with the NaOH-soluble (tissue) Ca2+ pool. Two compartments were identified during skeletal efflux, the first being small and due to either tissue carry-over or a labile skeletal compartment. The second compartment corresponded to bulk skeletal deposition. The various efflux protocols produced varying estimates of tissue Ca2+ levels and calcification rates and, thus, coral post-incubation processing has a profound impact on experimental interpretation.

Journal ArticleDOI
TL;DR: The consequences of the structure of learning flights for visual information processing are reviewed and how they may relate to the acquisition of a visual representation and the task of pinpointing the goal are discussed.
Abstract: Bees and wasps perform systematic flight manoevres when they leave their nest or a foodplace, during which they acquire or update their visual memory of the goal location. In a typical learning flight, the insect backs away from the goal in a series of arcs that are roughly centred on the goal. The mean rate of turning is rather constant and tends to balance the angular speed at which the arc is described. As a result, the insect views the goal at relatively fixed retinal positions in its left and right visual field, depending on flight direction. The general direction in which the insect backs away from the goal and the transition from one arc segment to the next are influenced by the local scene and by compass cues. Insects returning to the goal repeat some of the flight manoeuvres of their preceding learning flights. Their orientation in space and the retinal positions at which they view nearby landmarks are similar. One important function of learning flights appears to be the acquisition of visual depth information. We review the consequences of the structure of learning flights for visual information processing and discuss how they may relate to the acquisition of a visual representation and the task of pinpointing the goal.

Journal ArticleDOI
TL;DR: A causal relationship between skin, the passive flexural stiffness it imparts to the body and the influence of body stiffness on the undulatory wave speed and cycle frequency at which gar choose to swim is demonstrated.
Abstract: The functions of fish skin during swimming remain enigmatic. Does skin stiffen the body and alter the propagation of the axial undulatory wave? To address this question, we measured the skin's in situ flexural stiffness and in vivo mechanical role in the longnose gar Lepisosteus osseus. To measure flexural stiffness, dead gar were gripped and bent in a device that measured applied bending moment (N m) and the resulting midline curvature (m-1). From these values, the flexural stiffness of the body (EI in N m2) was calculated before and after sequential alterations of skin structure. Cutting of the dermis between two caudal scale rows significantly reduced the flexural stiffness of the body and increased the neutral zone of curvature, a region of bending without detectable stiffness. Neither bending property was significantly altered by the removal of a caudal scale row. These alterations in skin structure were also made in live gar and the kinematics of steady swimming was measured before and after each treatment. Cutting of the dermis between two caudal scale rows, performed under anesthesia, changed the swimming kinematics of the fish: tailbeat frequency (Hz) and propulsive wave speed (body lengths per second, L s-1) decreased, while the depth (in L) of the trailing edge of the tail increased. The decreases in tailbeat frequency and wave speed are consistent with predictions of the theory of forced, harmonic vibrations; wave speed, if equated with resonance frequency, is proportional to the square root of a structure's stiffness. While it did not significantly reduce the body's flexural stiffness, surgical removal of a caudal scale row resulted in increased tailbeat amplitude and the relative total hydrodynamic power. In an attempt to understand the specific function of the scale row, we propose a model in which a scale row resists medio-lateral force applied by a single myomere, thus functioning to enhance mechanical advantage for bending. Finally, surgical removal of a precaudal scale row did not significantly alter any of the kinematic variables. This lack of effect is associated with a lower midline curvature of the precaudal region during swimming compared with that of the caudal region. Overall, these results demonstrate a causal relationship between skin, the passive flexural stiffness it imparts to the body and the influence of body stiffness on the undulatory wave speed and cycle frequency at which gar choose to swim.

Journal ArticleDOI
TL;DR: The results of these studies indicate that sexually dimorphic spatial ability is dependent on the organization (in utero) and activational effects of gonadal hormones in meadow voles and deer mice, and that group differences in the laboratory are associated with group Differences in space utilization in the wild.
Abstract: A number of studies examining developmental, neural and hormonal aspects of sexually dimorphic spatial learning (Morris water-maze) in meadow voles (Microtus pennsylvanicus) and deer mice (Peromyscus maniculatus) are described. We found that, in adult deer mice, female spatial performance decreased during the breeding season relative to the non-breeding season, whereas the reverse pattern was observed in male performance. There was a sex difference favouring males in spatial learning during the breeding season, but not during the non-breeding season. In adult meadow voles, females with low levels of oestradiol and males performed better in the water-maze than females with high levels of oestradiol. Postweaning voles (20 and 25 days after birth) acquired the water-maze task more quickly than preweaning voles (day 10). No sex difference in water-maze performance was evident at any of these juvenile ages. When these same voles were tested again as adults to investigate retention and re-acquisition of the water-maze, both males and females from male-biased litters re-acquired the task better than males and females from female-biased litters. Together, the results of these studies indicate that sexually dimorphic spatial ability is dependent on the organization (in utero) and activational effects of gonadal hormones. These studies provide the first demonstration of the influence of natural changes in reproductive status on spatial learning of deer mice and meadow voles. The results also demonstrate that spatial performance of males and females is differentially affected by changes in reproductive status and that group differences in the laboratory are associated with group differences in space utilization in the wild. These findings help to clarify previous apparently contradictory findings about sex differences in spatial ability.

Journal ArticleDOI
TL;DR: It is concluded that the depression of aerobic energy turnover in isolated body wall musculature of S. nudus is induced by low extracellular pH, thus contributing to metabolic depression.
Abstract: Environmental stresses such as hypoxia or hypercapnia are known to cause acid-base disturbances and in several organisms they lead to metabolic depression. The present study was undertaken to quantify the influence of these changes in acidsbase parameters on metabolic rate. We determined the rate of oxygen consumption in a non-perfused preparation of the body wall musculature of the marine worm Sipunculus nudus at various levels of extra- and intracellular pH (pHe and pHi, respectively), PCO2 and [HCO3-]. The acidsbase status of the tissue was modified and clamped by long-term exposure to media set to specific values of extracellular pH, PCO2 and [HCO3-]. At a pHe of 7.90, which is equivalent to the normoxic normocapnic in vivo extracellular pH, and an ambient PCO2 of 0.03 kPa (control conditions), pHi was 7.26±0.02 (mean ± s.d., N=5). A reduction of extracellular pH from 7.90 to 7.20 resulted in a significant decrease of pHi to 7.17±0.05 at 0.03 kPa PCO2 (normocapnia) and to 7.20±0.02 at 1.01 kPa PCO2 (hypercapnia). At the same time, the rate of oxygen consumption of the tissue was significantly depressed by 18.7±4.7 % and 17.7±3.0 %, respectively. A significant depression of oxygen consumption by 13.7±4.7 % also occurred under hypercapnia at pHe 7.55 when pHi was elevated above control values (7.32±0.01). No significant changes in oxygen consumption were observed when pHe was either drastically elevated to 8.70 under normocapnia (pHi 7.36±0.05) or maintained at 7.90 during hypercapnia (pHi 7.37±0.03). ATP and phospho-l-arginine concentrations, as well as the Gibbs free energy change of ATP hydrolysis (dG/dATP), were maintained at high levels during all treatments, indicating an equilibrium between energy supply and demand. We conclude that the depression of aerobic energy turnover in isolated body wall musculature of S. nudus is induced by low extracellular pH. A model is proposed which could explain a reduced ATP cost of pHi regulation during extracellular acidosis, thus contributing to metabolic depression.

Journal ArticleDOI
TL;DR: The CFD analysis shows that the kinematics of tadpoles is specifically matched to their special shape and produces a jet-stream propulsion with high propulsive efficiency, as high as that achieved by teleost fishes.
Abstract: The hydrodynamics and undulating propulsion of tadpoles were studied using a newly developed two-dimensional computational fluid dynamics (CFD) modeling method. The mechanism of thrust generation associated with the flow patterns during swimming is discussed. Our CFD analysis shows that the kinematics of tadpoles is specifically matched to their special shape and produces a jet-stream propulsion with high propulsive efficiency, as high as that achieved by teleost fishes. Investigation of the effect of Reynolds number indicates that the Froude efficiency increases with increasing Reynolds number with no ceiling in generating the jet-stream propulsion. Further studies using tadpole- and fish-shaped models with hindlimbs added to their body profiles reveal that the tadpole shape ­ a globose head with a tapered tail and hindlimbs at the base of the tail ­ allows tadpoles, but not fish, to develop hindlimbs with very little handicap on propulsion. The shapes and kinematics of tadpoles appear to be specially adapted to the requirement of these organisms to transform into frogs.

Journal ArticleDOI
TL;DR: Examination of whole tissues and purified networks with the electron microscope reveals structures similar to vertebrate fibrillin-containing microfibrils, which suggest that the strength of the network is due to non-reducible crosslinks, while its elasticity is dependent upon disulfide bonds.
Abstract: The principal component of the body wall of the sea cucumber Cucumaria frondosa is a dermis consisting of collagen fibrils, microfibrils, proteoglycans and other soluble and insoluble components. A major structural constituent of the dermis is a network of 10­14 nm diameter microfibrils, which surrounds and penetrates bundles of collagen fibrils. This network has been extracted and purified using guanidine and bacterial collagenase. Tensile testing of the microfibrillar network in artificial sea water demonstrates that it is reversibly extensible up to approximately 300 % of its initial length. It behaves like a viscoelastic solid, having a long-range elastic component as well as a time-dependent viscous component. Reduction and alkylation of the cysteine residues in the network do not change its breaking strain or strength, but greatly increase the compliance of the network until, near the breaking strain, the tensile resistance rapidly increases. These data suggest that the strength of the network is due to non-reducible crosslinks, while its elasticity is dependent upon disulfide bonds. In deionized water, the network becomes swollen and, although it remains elastic, is much more compliant than when tested in artificial sea water. Examination of whole tissues and purified networks with the electron microscope reveals structures similar to vertebrate fibrillin-containing microfibrils. Considering that the dermis of C. frondosa is a mechanically mutable tissue in which elongation is accompanied by the sliding of collagen fibrils past one another, the microfibrillar network may act to maintain the orientation of fibrillar components during movement and may also provide a long-range restoring force.

Journal ArticleDOI
TL;DR: Cuttlefish use polarization vision and display for intraspecific recognition and communication, and the responses of cuttlefish to their images reflected from a mirror changed when the polarization patterns of the reflected images were distorted.
Abstract: Polarization sensitivity is well documented in marine animals, but its function is not yet well understood. Of the cephalopods, squid and octopus are known to be sensitive to the orientation of polarization of incoming light. This sensitivity arises from the orthogonal orientation of neighboring photoreceptors. Electron microscopical examination of the retina of the cuttlefish Sepia officinalis L. revealed the same orthogonal structure, suggesting that cuttlefish are also sensitive to linearly polarized light. Viewing cuttlefish through an imaging polarized light analyzer revealed a prominent polarization pattern on the arms, around the eyes and on the forehead of the animals. The polarization pattern disappeared when individuals lay camouflaged on the bottom and also during extreme aggression display, attacks on prey, copulation and egg-laying behavior in females. In behavioral experiments, the responses of cuttlefish to their images reflected from a mirror changed when the polarization patterns of the reflected images were distorted. These results suggest that cuttlefish use polarization vision and display for intraspecific recognition and communication.

Journal ArticleDOI
TL;DR: It is suggested that birds of any size that have well-streamlined bodies can achieve minimum body drag coefficients of around 0.05 if the feet can be fully retracted under the flank feathers, and field observations of flight speeds may need to be reinterpreted in the light of higher estimates of Vmp.
Abstract: A teal (Anas crecca) and a thrush nightingale (Luscinia luscinia) were trained to fly in the Lund wind tunnel for periods of up to 3 and 16 h respectively. Both birds flew in steady flapping flight, with such regularity that their wingbeat frequencies could be determined by viewing them through a shutter stroboscope. When flying at a constant air speed, the teal's wingbeat frequency varied with the 0.364 power of the body mass and the thrush nightingale's varied with the 0.430 power. Both exponents differed from zero, but neither differed from the predicted value (0.5) at the 1 % level of significance. The teal continued to flap steadily as the tunnel tilt angle was varied from -1 ° (climb) to +6 ° (descent), while the wingbeat frequency declined progressively by about 11 %. In both birds, the plot of wingbeat frequency against air speed in level flight was U-shaped, with small but statistically significant curvature. We identified the minima of these curves with the minimum power speed (Vmp) and found that the values predicted for Vmp, using previously published default values for the required variables, were only about two-thirds of the observed minimum-frequency speeds. The discrepancy could be resolved if the body drag coefficients (CDb) of both birds were near 0.08, rather than near 0.40 as previously assumed. The previously published high values for body drag coefficients were derived from wind-tunnel measurements on frozen bird bodies, from which the wings had been removed, and had long been regarded as anomalous, as values below 0.01 are given in the engineering literature for streamlined bodies. We suggest that birds of any size that have well-streamlined bodies can achieve minimum body drag coefficients of around 0.05 if the feet can be fully retracted under the flank feathers. In such birds, field observations of flight speeds may need to be reinterpreted in the light of higher estimates of Vmp. Estimates of the effective lift:drag ratio and range can also be revised upwards. Birds that have large feet or trailing legs may have higher body drag coefficients. The original estimates of around CDb=0.4 could be correct for species, such as pelicans and large herons, that also have prominent heads. We see no evidence for any progressive reduction of body drag coefficient in the Reynolds number range covered by our experiments, that is 21 600­215 000 on the basis of body cross-sectional diameter.

Journal ArticleDOI
TL;DR: A new hypothesis is presented that the orientation of adult monarchs undergoes a continual clockwise shifting throughout the 3-5 generations, rotating by 360 in the course of the year, consistent with the timing of arrivals and the relative abundance of the successive generations of monarchs throughout eastern North America.
Abstract: From late August to early September, millions of adult monarch butterflies of the eastern North American population cease reproducing, become highly gregarious and begin migrating southwards. By mid-October, they migrate through central Texas into Mexico where they follow the Sierra Madre Oriental across the Tropic of Cancer. They then shift direction westwards towards the Transverse Neovolcanic Belt of mountains where they overwinter without breeding. A rapid exodus northwards occurs at the spring equinox, and by early April both sexes reach the Gulf Coast states where the females lay eggs on the resurgent spring milkweed (Asclepias) flora and die. Adults of the new generation continue the migration to the northernmost breeding range, arriving by early June. Two or more short-lived breeding generations are produced over the summer, spread eastwards across the Appalachian Mountains and, by September, the autumn migration is again under way. This paper presents a new hypothesis that the orientation of adult monarchs undergoes a continual clockwise shifting throughout the 3-5 generations, rotating by 360 in the course of the year. This hypothesis is consistent with the timing of arrivals and the relative abundances of the successive generations of monarchs throughout eastern North America, with the directions of movement of their spring, summer and autumn generations, and with the timing of their arrival at the overwintering area in central Mexico.