scispace - formally typeset
Search or ask a question

Showing papers in "The Journal of Neuroscience in 1987"


Journal ArticleDOI
TL;DR: The results suggest that GNT in cortical neurons can be separated into 2 components distinguishable on the basis of differences in time course and ionic dependence, and the notion that the activation of voltage- dependent Ca channels may not be required for lethal Ca entry is supported.
Abstract: The cellular mechanisms by which excess exposure to the excitatory neurotransmitter glutamate can produce neuronal injury are unknown. More than a decade ago it was hypothesized that glutamate neurotoxicity (GNT) is a direct consequence of excessive neuronal excitation (“excitotoxicity” hypothesis); more recently, it has been hypothesized that a Ca influx triggered by glutamate exposure might mediate GNT (Ca hypothesis). A basic test to discriminate between these hypotheses would be to determine the dependence of GNT on the extracellular ionic environment. The excitotoxicity hypothesis predicts that GNT should depend critically on the presence of extracellular Na, since that ion appears to mediate glutamate neuroexcitation in the CNS; the Ca hypothesis predicts that GNT should depend critically on the presence of extracellular Ca. The focus of the present experiments was to determine the effects of several alterations in the extracellular ionic environment upon the serial morphologic changes that occur after mouse neocortical neurons in cell culture receive toxic exposure to glutamate. The results suggest that GNT in cortical neurons can be separated into 2 components distinguishable on the basis of differences in time course and ionic dependence. The first component, marked by neuronal swelling, occurs early, is dependent on extracellular Na and Cl, can be mimicked by high K, and is thus possibly “excitotoxic.” The second component, marked by gradual neuronal disintegration, occurs late, is dependent on extracellular Ca, can be mimicked by A23187, and is thus possibly mediated by a transmembrane influx of Ca. While either component alone is ultimately capable of producing irreversible neuronal injury, the Ca-dependent mechanism predominates at lower exposures to glutamate. Glutamate exposure likely leads to a Ca influx both through glutamate-activated cation channels and through voltage- dependent Ca channels activated by membrane depolarization. Addition of 20 mM Mg, however, did not substantially block GNT; this finding, together with the observation that GNT is largely preserved in sodium- free solution, supports the notion that the activation of voltage- dependent Ca channels may not be required for lethal Ca entry. The possibility that N-methyl-D-aspartate receptors may play a dominant role in mediating glutamate-induced lethal Ca influx is discussed.

1,840 citations


Journal ArticleDOI
TL;DR: Psychophysical experiments on the interactions of color, form, depth, and movement in human perception are described, and it is attempted to correlate these aspects of visual perception with the different subdivisions of the visual system.
Abstract: Physiological and anatomical findings in the primate visual system, as well as clinical evidence in humans, suggest that different components of visual information processing are segregated into largely independent parallel pathways. Such a segregation leads to certain predictions about human vision. In this paper we describe psychophysical experiments on the interactions of color, form, depth, and movement in human perception, and we attempt to correlate these aspects of visual perception with the different subdivisions of the visual system.

1,569 citations


Journal ArticleDOI
TL;DR: Some neurons regularly survived brief glutamate exposure; these possibly glutamate-resistant neurons had electrophysiologic properties, including chemosensitivity to glutamate, that were grossly similar to those of the original population.
Abstract: The central neurotoxicity of the excitatory amino acid neurotransmitter glutamate has been postulated to participate in the pathogenesis of the neuronal cell loss associated with several neurological disease states, but the complexity of the intact nervous system has impeded detailed analysis of the phenomenon. In the present study, glutamate neurotoxicity was studied with novel precision in dissociated cell cultures prepared from the fetal mouse neocortex. Brief exposure to glutamate was found to produce morphological changes in mature cortical neurons beginning as quickly as 90 sec after exposure, followed by widespread neuronal degeneration over the next hours. Quantitative dose-toxicity study suggested an ED50 of 50-100 microM for a 5 min exposure to glutamate. Immature cortical neurons and glia were not injured by such exposures to glutamate. Uptake processes probably do not limit GNT in culture, as the uptake inhibitor dihydrokainate did not potentiate GNT. Possibly reflecting the lack of uptake limitation, glutamate was found to be actually more potent than kainate as a neurotoxin in these cultures, a dramatic reversal of the in vivo potency rank order. Some neurons regularly survived brief glutamate exposure; these possibly glutamate-resistant neurons had electrophysiologic properties, including chemosensitivity to glutamate, that were grossly similar to those of the original population.

1,492 citations


Journal ArticleDOI
TL;DR: The response of place cells to changes in the animal's environment was investigated using the techniques set out in the preceding paper and the firing pattern of a cell in an apparatus of one shape could not be predicted from a knowledge of the firing patterns in the other shape.
Abstract: Using the techniques set out in the preceding paper (Muller et al., 1987), we investigated the response of place cells to changes in the animal's environment. The standard apparatus used was a cylinder, 76 cm in diameter, with walls 51 cm high. The interior was uniformly gray except for a white cue card that ran the full height of the wall and occupied 100 degrees of arc. The floor of the apparatus presented no obstacles to the animal's motions. Each of these major features of the apparatus was varied while the others were held constant. One set of manipulations involved the cue card. Rotating the cue card produced equal rotations of the firing fields of single cells. Changing the width of the card did not affect the size, shape, or radial position of firing fields, although sometimes the field rotated to a modest extent. Removing the cue card altogether also left the size, shape, and radial positions of firing fields unchanged, but caused fields to rotate to unpredictable angular positions. The second set of manipulations dealt with the size and shape of the apparatus wall. When the standard (small) cylinder was scaled up in diameter and height by a factor of 2, the firing fields of 36% of the cells observed in both cylinders also scaled, in the sense that the field stayed at the same angular position and at the same relative radial position. Of the cells recorded in both cylinders, 52% showed very different firing patterns in one cylinder than in the other. The remaining 12% of the cells were virtually silent in both cylinders. Similar results were obtained when individual cells were recorded in both a small and a large rectangular enclosure. By contrast, when the apparatus floor plan was changed from circular to rectangular, the firing pattern of a cell in an apparatus of one shape could not be predicted from a knowledge of the firing pattern in the other shape. The final manipulations involved placing vertical barriers into the otherwise unobstructed floor of the small cylinder. When an opaque barrier was set up to bisect a previously recorded firing field, in almost all cases the firing field was nearly abolished. This was true even though the barrier occupied only a small fraction of the firing field area. A transparent barrier was effective as the opaque barrier in attenuating firing fields. The lead base used to anchor the vertical barriers did not affect place cell firing.(ABSTRACT TRUNCATED AT 400 WORDS)

1,381 citations


Journal Article
TL;DR: The distributions of the mu, delta, and kappa opioid receptor subtypes in the rat forebrain and midbrain using in vitro autoradiography support the existence of at least 3 distinct opioid receptors with possibly separate functional roles.
Abstract: While there is an abundance of pharmacological and biochemical evidence to suggest the existence of multiple opioid receptors, their precise localization within the brain is unclear. To help clarify this issue, the present study examined the distributions of the mu, delta, and kappa opioid receptor subtypes in the rat forebrain and midbrain using in vitro autoradiography. Mu and delta receptors were labeled with the selective ligands 3H-DAGO (Tyr- D-Ala-Gly-MePhe-Gly-ol), and 3H-DPDPE (D-Pen2, D-Pen5-enkephalin), respectively, while the kappa receptors were labeled with 3H-(-)bremazocine in the presence of unlabeled DAGO and DPDPE. Based on previous findings in our laboratory, the labeling conditions were such that each ligand selectively occupied approximately 75% of each of the opioid sites. The results demonstrated that all 3 opioid receptor subtypes were differentially distributed in the rat brain. Mu binding was dense in anterior cingulate cortex, neocortex, amygdala, hippocampus, ventral dentate gyrus, presubiculum, nucleus accumbens, caudate putamen, thalamus, habenula, interpeduncular nucleus, pars compacta of the substantia nigra, superior and inferior colliculi, and raphe nuclei. In contrast, delta binding was restricted to only a few brain areas, including anterior cingulate cortex, neocortex, amygdala, olfactory tubercle, nucleus accumbens, and caudate putamen. Kappa binding, while not as widespread as observed with mu binding, was densely distributed in the amygdala, olfactory tubercle, nucleus accumbens, caudate putamen, medial preoptic area, hypothalamus, median eminence, periventricular thalamus, and interpeduncular nucleus. While all 3 opioid receptor subtypes could sometimes be localized within the same brain area, their precise distribution within the region often varied widely. For example, in the caudate putamen, mu binding had a patchy distribution, while delta and kappa sites were diffusely distributed, with delta sites being particularly dense ventrolaterally and kappa sites being concentrated ventromedially. These results support the existence of at least 3 distinct opioid receptors with possibly separate functional roles.

943 citations


Journal ArticleDOI
TL;DR: In this article, a TV/computer technique was used to simultaneously track a rat's position in a simple apparatus and record the firing of single hippocampal complex-spike neurons.
Abstract: A TV/computer technique was used to simultaneously track a rat's position in a simple apparatus and record the firing of single hippocampal complex-spike neurons. The primary finding is that many of these neurons behave as "place cells," as first described by O'Keefe and Dostrovsky (1971) and O'Keefe (1976). Each place cell fires rapidly only when the rat is in a delimited portion of the apparatus (the cell's "firing field"). In agreement with O'Keefe (1976) and many other authors, we have seen that the firing of place cells is highly correlated with the animal's position and is remarkably independent of other aspects of the animal's behavioral state. Several properties of firing fields were characterized. Firing fields are stable over long time intervals (days) if the environment is constant. They come in several shapes when the animal is in a cylindrical apparatus; moreover, the set of field shapes is different when the animal is in a rectangular apparatus. It also seems that a single cell may have more than one field in a given apparatus. By collecting a sample of 40 place cells in a fixed environment, it has been possible to describe certain features of the place cell population, including the spatial distribution of fields within the apparatus, the average size of fields, and the "intensity" of fields (as measured by maximum firing rate). We also tested the hypothesis that the firing rate of each place cell signals the animal's distance from a point (the field center) so that a weighted average of the firing of the individual cells encodes the animal's position within the apparatus. The animal's position, calculated according to this "distance hypothesis," is systematically different from the animal's true position; this implies that the hypothesis in its simplest form is wrong.

867 citations


Journal ArticleDOI
TL;DR: Anterograde axonal tract tracing with Phaseolus vulgaris- leucoagglutinin (PHA-L), combined with immunohistochemical localization of tyrosine hydroxylase (TH) and autoradiographic localization of mu- opiate receptor binding sites, shows that midbrain projections to the striatum are distributed to either the mu-opiate receptor-rich “patch” or the receptor-poor “matrix”
Abstract: Mesostriatal projections, which arise from dopaminergic and non- dopaminergic neurons in the ventral tegmental area, substantia nigra, and retrorubral area, are compartmentally organized in the striatum. Anterograde axonal tract tracing with Phaseolus vulgaris- leucoagglutinin (PHA-L), combined with immunohistochemical localization of tyrosine hydroxylase (TH) and autoradiographic localization of mu- opiate receptor binding sites, shows that midbrain projections to the striatum are distributed to either the mu-opiate receptor-rich “patch” or the receptor-poor “matrix” striatal compartments. Three morphologically distinct mesostriatal afferent fiber types are labeled. The first type, type A, forms a plexus of relatively thin (0.1–0.4 micron), smooth fibers with small varicosities (0.3–0.6 micron). A second type, type B, is similar to the first in forming a plexus of fibers, but is slightly thicker (0.2–0.6 micron), with more frequent varicosities (0.4–1.0 micron) that give this fiber type a crinkled appearance. The third type, type C, constitutes a minority of striatal afferents and is characterized by its large caliber (0.4–0.7 micron) with large bulbous varicosities (1.2–2.0 micron). Projections of the ventral tegmental area (A10 cell group) are primarily dopaminergic type A fibers directed to the matrix of the ventromedial striatum, including the nucleus accumbens. The retrorubral area (A8 cell group) also provides predominantly dopaminergic type A fibers to the striatal matrix, but these are distributed dorsally. The substantia nigra contains a mixed population of neurons that project to the striatum. Some, located in the dorsal tier of the pars compacta (dorsal A9 cell group), provide dopaminergic type A fibers to the striatal matrix. Others, in the ventral tier of the pars compacta (ventral A9 cell group) and in the ventral tier of the pars reticulata (displaced A9 cells), provide dopaminergic type B fibers to the striatal patches. An additional set of substantia nigra neurons that are non-dopaminergic is the source of type C fibers to the striatal matrix. Thus, distinct dorsal and ventral sets of midbrain dopaminergic neurons project, respectively, to striatal matrix and patches, and there is a non- dopaminergic mesostriatal projection to the matrix.

812 citations


Journal ArticleDOI
TL;DR: The comparison of the timing of the differentiation and innervation of the postmitotic granule cells in vivo with the development of the K+ dependence in vitro would indicate that depolarization of the granule neurons in culture mimics the influence of the physiological stimulation in vivo.
Abstract: Cultures greatly enriched in granule cells from early postnatal cerebellum (P8) were grown in a medium containing fetal calf serum. Under the conditions used, nerve cells died, usually within a week, unless the K+ concentration in the medium was greater than or equal to 20 mM. The requirement for elevated [K+]e was manifested by about 3 d in vitro, and after this time continuous exposure to high [K+]e was essential for the survival of the granule cells. The initial morphological and biochemical maturation of the granule cells was similar in the presence and the absence of elevated [K+]e, suggesting that the dependence on depolarizing conditions develops in parallel with the expression of the differentiated characteristics of the cells. The positive effect of elevated [K+]e on granule cell survival was not influenced by preventing bioelectric activity in the cultures with TTX and xylocaine. On the other hand, depolarization-induced transmembrane Ca2+ flux was essential in securing the maintenance of the granule cells. Depolarized nerve cells were compromised when Ca2+ entry was blocked by elevated Mg2+, EGTA, or organic Ca2+ antagonists, while dihydropyridine Ca2+ agonists [BAY K 8644, (+)-(S)-202 79 1 and CGP 28392] were potent agents preventing nerve cell loss in the presence of 15 mM [K+]e, which was ineffective on its own. Calmodulin inhibitors (1 microM trifluoperazine or calmidazolium) blocked the beneficial effect of K+-induced depolarization on granule cells. The comparison of the timing of the differentiation and innervation of the postmitotic granule cells in vivo with the development of the K+ dependence in vitro would indicate that depolarization of the granule neurons in culture mimics the influence of the physiological stimulation in vivo through excitatory amino acid receptors, including N-methyl-D-aspartate receptors, involving Ca2+ entry and the activation of a Ca2+/calmodulin- dependent protein kinase.

797 citations


Journal ArticleDOI
TL;DR: The physiological properties of the cells in the thin and pale stripes reflect the properties of their antecedent cells in 17, but nevertheless exhibit differences that suggest the kinds of processing that might occur at this stage.
Abstract: Primate visual cortical area 18 (visual area 2), when stained for the enzyme cytochrome oxidase, shows a pattern of alternating dark and light stripes; in squirrel monkeys, the dark stripes are clearly of 2 alternating types, thick and thin. We have recorded from these 3 subdivisions in macaques and squirrel monkeys, and find that each has distinctive physiological properties: (1) Cells in one set of dark stripes, in squirrel monkeys the thin stripes, are not orientation- selective; a high proportion show color-opponency. (2) Cells in the other set of dark stripes (thick stripes) are orientation-selective; most of them are also selective for binocular disparity, suggesting that they are concerned with stereoscopic depth. (3) Cells in the pale stripes are also orientation-selective and more than half of them are end-stopped. Each of the 3 subdivisions receives a different input from area 17: the thin stripes from the blobs, the pale stripes from the interblobs, the thick stripes from layer 4B. The pale stripes are thus part of the parvocellular system, and the thick stripes part of the magnocellular system. The physiological properties of the cells in the thin and pale stripes reflect the properties of their antecedent cells in 17, but nevertheless exhibit differences that suggest the kinds of processing that might occur at this stage.

742 citations


Journal ArticleDOI
TL;DR: In the present study, the temporal disparity among combinations of different sensory stimuli was shown to be a critical factor influencing the integration of multisensory stimuli by superior colliculus neurons.
Abstract: One of the most impressive features of the central nervous system is its ability to process information from a variety of stimuli to produce an integrated, comprehensive representation of the external world. In the present study, the temporal disparity among combinations of different sensory stimuli was shown to be a critical factor influencing the integration of multisensory stimuli by superior colliculus neurons. Several temporal principles that govern multisensory integration were revealed: (1) maximal levels of response enhancement were generated by overlapping the peak discharge periods evoked by each modality; (2) the magnitude of this enhancement decayed monotonically to zero as the peak discharge periods became progressively more temporally disparate; (3) with further increases in temporal disparity, the same stimulus combinations that previously produced enhancement could often produce depression; and (4) these kinds of interactions could frequently be predicted from the discharge trains initiated by each stimulus alone. Since multisensory superior colliculus neurons project to premotor areas of the brain stem and spinal cord that control the orientation of the receptor organs (eyes, pinnae, head), they are believed to influence attentive and orientation behaviors. Therefore, it is likely that the temporal relationships of different environmental stimuli that control the activity of these neurons are also a powerful determinant of superior colliculus-mediated attentive and orientation behaviors.

728 citations


Journal ArticleDOI
R. Gill1, AC Foster1, GN Woodruff1
TL;DR: The potent neuroprotective effects of MK-801 in these cerebral ischemia models add further weight to the evidence that NMDA receptors are involved in the mechanism of ischemic-induced neuronal degeneration.
Abstract: The neuroprotective effects of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors, were evaluated in models of cerebral ischemia using Mongolian gerbils. Bilateral occlusion of the carotid arteries for a period of 5 min resulted in a consistent pattern of degeneration of hippocampal CA1 and CA2 pyramidal neurons, which was quantified using an image analyzer. Systemic administration of MK-801 (0.01-10 mg/kg, i.p.) 1 hr prior to the occlusion caused a dose-dependent protection of the CA1 and CA2 neurons. The ED50 value for neuroprotection by MK-801 was calculated to be 0.3 mg/kg, and at doses greater than or equal to 3 mg/kg the majority of animals were completely protected against the ischemic insult. Systemic administration of MK-801 (1 or 10 mg/kg, i.p.) 1 hr prior to unilateral occlusion of the right carotid artery resulted in significant protection against hippocampal neurodegeneration following 10 min of occlusion, and increased the survival rate after 30 min of occlusion. The potent neuroprotective effects of MK-801 in these cerebral ischemia models add further weight to the evidence that NMDA receptors are involved in the mechanism of ischemia-induced neuronal degeneration.

Journal ArticleDOI
TL;DR: Recovering axons from the axotomized retinal ganglion cells in the adult rat are not only able to regrow lengthy axons, but may also form synapses in the SC.
Abstract: In adult rats, one optic nerve was transected and replaced by a 4 cm segment of autologous peripheral nerve (PN) that linked one eye and the superior colliculus (SC) along a predominantly extracranial course. Retrograde and orthograde studies with the tracers HRP or rhodamine-B-isothiocyanate (RITC), as well as immunocytochemical neuronal labels, indicated the following: (1) Regenerating axons from the axotomized retinal ganglion cells extended along the entire PN grafts, covering a distance nearly twice that of the normal retinotectal projection of intact rats. (2) Some of these axons penetrated the SC and formed terminal arborizations up to 500 microns from the end of the graft. (3) By electron microscopy, the arborizations of these regenerated axons in the SC were seen as small HRP-labeled axonal profiles that contacted neuronal processes in the SC; some of these contacts showed pre- and postsynaptic membrane specializations. These findings indicate that injured retinal ganglion cells in the adult rat are not only able to regrow lengthy axons, but may also form synapses in the SC.

Journal ArticleDOI
TL;DR: The number of Thioflavine S-positive neurofibrillary tangles and neuritic plaques determined in visual and auditory cortical regions of 8 patients with Alzheimer's disease suggests that NFT reside in the cell bodies of a subpopulation of pyramidal neurons, namely, those that furnish long corticocortical projections in homologous regions of monkey neocortex.
Abstract: The number of Thioflavine S-positive neurofibrillary tangles (NFT) and neuritic plaques (NP) was determined in visual and auditory cortical regions of 8 patients with Alzheimer's disease. On both a regional and laminar basis, NFT exhibited very distinctive and consistent distribution patterns. The mean (+/- SEM) number of NFT in a 250-micron-wide cortical traverse was very low in area 17, primary visual cortex (0.9 +/- 1.0), increased 20-fold in the immediately adjacent visual association cortex of area 18 (19.7 +/- 3.6), and showed a further doubling in area 20, the higher-order visual association cortex of the inferior temporal gyrus (35.5 +/- 8.8). Similar differences in NFT number were present between primary auditory (1.6 +/- 0.5) and auditory association (18.9 +/- 5.4) regions. On a laminar basis, NFT were predominantly present in layers III and V, although there were striking regional differences in the proportion of NFT in these 2 layers. Layer III contained 79% of the NFT in layers III and V in area 18, 41% in area 20, and only 27% in area 22. In contrast, NP showed different, and less specific, regional and laminar distribution patterns. Total NP number was similar in the 3 visual areas, although there were marked regional differences in the type of NP present. Nearly 80% of the NP in area 17 was of the NPc type (i.e., contained a dense, brightly fluorescent core), whereas over 70% of the NP in both areas 18 and 21 was of the NPnc type (i.e., lacked a dense, brightly fluorescent core). NP were present in every cortical layer but were most numerous in layers III and IV. The distinctive distribution patterns of NFT are very similar to the regional and laminar locations of long corticocortical projection neurons in homologous regions of monkey neocortex. This association suggests that NFT reside in the cell bodies of a subpopulation of pyramidal neurons, namely, those that furnish long corticocortical projections. In contrast, the distribution patterns of NP suggest that multiple neuronal systems contribute to their formation.

Journal ArticleDOI
TL;DR: The results suggest that the cooperativity aspect of LTP is related to a need for sufficient postsynaptic depolarization.
Abstract: The conditions responsible for the associative properties of long-term potentiation (LTP) were examined in the CA1 region of the hippocampal slice preparation. Intracellularly recorded EPSPs resulting from single-volley stimulation at low frequency (0.15-0.1 Hz) in the stratum radiatum or oriens were paired with depolarizing current pulses (50-100 msec) injected through the recording microelectrode. It is shown that these EPSPs, when paired with pulses of sufficient magnitude, become potentiated. This potentiation generally reached a peak after 20-30 pairing events and could outlast the conditioning period by more than 1 hr. It was specific to the paired input, was blocked by 2-amino-5-phosphonovalerate (APV) and was largely blocked by prior homosynaptic tetanization (and vice versa). In experiments performed with picrotoxin (PTX) in the bath, EPSPs were potentiated using 2-4 nA current pulses, with somewhat higher values in normal solution. The effective current pulses, in both normal and PTX solution, produced a repetitive spike discharge of 7-11 spikes (per 100 msec), and within this range, higher frequencies were associated with larger potentiations. However, since similar degrees of EPSP potentiation were observed following blockade of spike activity by intracellular QX-314, spike activity was not the primary conditioning factor. For the potentiation to appear, the EPSP had to occur together with the current pulse or precede it by less than about 100 msec. No potentiation was observed when the EPSP immediately succeeded the pulse. The results suggest that the cooperativity aspect of LTP is related to a need for sufficient postsynaptic depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: The number and proportion of neurons displaying GABA immunoreactivity were determined for 50-micron-wide columns through the thickness of 10 areas of monkey cerebral cortex, including the precentral motor area, and every area but area 4 displaying a second concentration in the principal thalamocortical recipient layers.
Abstract: The number and proportion of neurons displaying GABA immunoreactivity were determined for 50-micron-wide columns through the thickness of 10 areas of monkey cerebral cortex, including the precentral motor area (area 4), 3 cytoarchitectonic fields of the first somatic sensory area (areas 3b, 1, and 2), 2 areas of parietal association cortex (areas 5 and 7), the first and second visual areas (areas 17 and 18), area 21 of the temporal lobe, and areas of the orbital and lateral frontal cortex. Methods of fixation and immunocytochemical processing were designed to maximize the number of stained cells in 15-micron-thick frozen sections and 1-micron-thick plastic sections. In 8 of the 10 areas the number and proportion of GABA-immunoreactive neurons per 50-micron-wide column were found to be the same (34–43 cells/column; 25% of the total neuronal population). Areas 17 and 3b differed. Area 17 contained 50% more GABA-immunoreactive neurons (52–66 cells/column) but more than twice the total number of neurons, so that the GABA cells made up less than 20% of the total. In 3 monkeys, the number and proportion of GABA- positive neurons per 50-micron-wide column in area 3b were smaller than in adjacent areas of sensorimotor cortex (26–42 cells/column; 19–22%). In 2 other monkeys, the number and proportion (34–43 cells/column; 24– 26%) were the same as in adjacent areas. Despite the similarity among most areas of monkey cortex, within some areas, the number of GABA- positive neurons per 50-micron-wide column varied as much as 30%. These variations form a significant, repeating pattern only in area 18, where narrow bands (150–200 micron wide) of relatively few stained cells alternated with either narrow or wide bands (600–700 micron wide) in which columns contained more cells. The GABA-immunoreactive neurons were unevenly distributed across layers, with every area containing large numbers and proportions of stained cells in layer II, and every area but area 4 displaying a second concentration in the principal thalamocortical recipient layers. In area 4, the number of GABA- positive neurons declined sharply from layer II to layer III and remained low through layer VI. For areas displaying the greatest intra- areal variability, only 1 or 2 layers contributed significantly to that variability (layer IV in area 3b, layers III and V in area 18, and layers II and III in area 17).(ABSTRACT TRUNCATED AT 400 WORDS)

Journal ArticleDOI
TL;DR: It is shown that implantations of brain grafts containing the fetal SCN reestablish circadian rhythms of locomotor activity in adult hamsters previously made arrhythmic by SCN lesions.
Abstract: It is well established that overt circadian rhythms are permanently disrupted following lesions of the hamster hypothalamic suprachiasmatic nucleus (SCN). In the present study, we show that implantations of brain grafts containing the fetal SCN reestablish circadian rhythms of locomotor activity in adult hamsters previously made arrhythmic by SCN lesions. The restoration of free-running rhythms in conditions of constant darkness is correlated with the presence in the graft of neuropeptides normally present in the SCN of unlesioned hamsters, including vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), and vasopressin (VP). In several recipients, grafts were found to receive retinal input, and appeared to send efferents into the host brain. Not all functions of the SCN were reinstated by the graft: animals with restored locomotor rhythms did not show gonadal regression in the absence of light, and failed to synchronize (entrain) to light intensities to which SCN-intact animals responded.

Journal ArticleDOI
TL;DR: The slow EPSP appears to be generated by the blockade of a nonvoltage- dependent, resting potassium current, and it is proposed that the muscarinic blockade of IAHP is primarily involved in enhancing action potential discharge to depolarizing stimuli, while theslow EPSP acts directly to cause action potential discharged.
Abstract: A slow muscarinic EPSP, accompanied by an increase in membrane input resistance, can be elicited in hippocampal CA1 pyramidal cells in vitro by electrical stimulation of cholinergic afferents in the slice preparation. Associated with the slow EPSP is a blockade of calcium-activated potassium afterhyperpolarizations (AHPs) (Cole and Nicoll, 1984a). In this study a single-electrode voltage clamp was used to examine the currents affected by activation of muscarinic receptors, using either bath application of carbachol or electrical stimulation of the cholinergic afferents. The 3 main findings of this study are that (1) of the 2 calcium-activated potassium currents (termed IAHP and IC) in hippocampal pyramidal cells, only IAHP is sensitive to carbachol; (2) IAHP is approximately 10-fold more sensitive to carbachol than is another muscarine-sensitive current, IM; and (3) neither blockade of IAHP nor of IM can account for the production of the slow EPSP. Rather, the slow EPSP appears to be generated by the blockade of a nonvoltage-dependent, resting potassium current. We propose that the muscarinic blockade of IAHP, which largely accounts for spike frequency adaptation, is primarily involved in enhancing action potential discharge to depolarizing stimuli, while the slow EPSP acts directly to cause action potential discharge.

Journal ArticleDOI
TL;DR: Results show that sequential forms of NFs, composed of NF-M and NF-L, appears to function in establishing the neuronal phenotype and in initiating and maintaining neurite outgrowth, and a “mature” state to the NF is expressed by developing and maturing neurons throughout the nervous system.
Abstract: Monoclonal antibodies (mAbs) to rat neurofilament (NF) proteins NF-L, NF-M, and NF-H were used to examine the developmental programs of NF expression in rat embryos. The ability of these mAbs to recognize differentially phosphorylated states of NF-M and NF-H (Lee et al., 1987, the preceding paper) was exploited in order to examine the temporal and spatial patterns of NF phosphorylation during early neuronal development in vivo. NF proteins were first detected on the twelfth day postfertilization (E12) using NF-L- or NF-M-specific mAbs. By E13, the coexpression of NF-L and NF-M was widespread, reflecting dramatic increases of immunoreactivity to both subunits. Partial phosphorylation, denoted P[+], of NF-M was already present in perikarya and neurites of E12 neurons. Extensively phosphorylated, or P[+++], isoforms of NF-M appeared in E13 axons, thereby establishing a proximodistal gradient of NF phosphorylation during the earliest phase of NF expression. Immunoblots of tissue homogenates revealed that most NF-M of E13 embryos exists in a partially phosphorylated, or P[+], isoform. Unequivocal staining for NF-H first appeared at E15, a time at which NF-L and NF-M had already attained their adult patterns of immunocytochemical staining. Levels of NF-H were extremely low at E15 but could be detected in all of its differentially phosphorylated states, i.e., nonphosphorylated P[-], partly P[+], and highly P[+++] phosphorylated isoforms. P[+++] isoforms of NF-H were restricted to the distal portions of E15 axons, although staining of more proximal axons, like those in adult, was noted by E17. Immunoblots of E17 embryos revealed most NF-H as P[-] and P[+] isoforms. Quantities of immunoreactive NF-H increased very slowly and remained well below those of NF-M and NF-L for several weeks beyond birth. These results show that sequential forms of NFs are expressed by developing and maturing neurons throughout the nervous system. An "immature" form of NFs, composed of NF-M and NF-L, appears to function in establishing the neuronal phenotype and in initiating and maintaining neurite outgrowth. Addition of NF-H confers a "mature" state to the NF. This delayed expression of NF-H is a slow and graduated process that coincides in time with the stabilization of neuronal circuitries and may be important in modulating axonal events, such as the slowing of cytoskeletal transport and the growth of axonal caliber.

Journal ArticleDOI
TL;DR: Two-dimensional gel analysis and immunoblotting of total proteins from adult rat dorsal root ganglion verified mAb specificity in situ, and showed that differentially phosphorylated isoforms of NF-M and NF-H occur in vivo.
Abstract: A new panel of greater than 300 monoclonal antibodies (mAbs) was prepared to the high, middle, and low Mr rat neurofilament (NF) subunits (NF-H, NF-M and NF-L, respectively). NF proteins were purified both from native, i.e., phosphorylated rat NFs and from enzymatically dephosphorylated rat NFs. The resulting mAbs were used to biochemically and immunochemically distinguish and characterize distinct and differentially phosphorylated isoforms of NF subunits. By immunoblot, all mAbs specific for NF-L and some mAbs specific for NF-M detected their specific NF subunit regardless of whether or not the NFs had been treated with alkaline phosphatase, and such antibodies were termed “phosphate-independent” or P[ind] mAbs. The other mAbs were specific for NF-M, NF-H, or for both NF-M and NF-H, and they recognized epitopes in the COOH termini of these subunits. Significantly, the latter mAbs could discriminate different isoforms of NF-M and NF-H, depending on the phosphorylation state of each variant. Such mAbs were assigned to one of 4 distinct categories on the basis of their performance in immunoblots of progressively dephosphorylated rat NF samples and by immunohistochemistry of various adult rat nervous tissues: (1) P[-] mAbs preferentially stained neuronal perikarya and dendrites, and they recognized only extensively dephosphorylated (and nonphosphorylated) NF- H; (2) P[+] mAbs stained axons more strongly than perikarya, and primarily blotted phosphorylated, but not nonphosphorylated, forms of NF-H and NF-M; (3) P[++] mAbs stained axons almost to the exclusion of perikarya, and in blots recognized only the extensively phosphorylated forms of NF-H and NF-M (i.e., subunits subjected to limited enzymatic dephosphorylation); (4) P[ ] mAbs also predominantly stained axons, but the briefest alkaline phosphatase treatment abolished the NF-M and NF-H immunobands produced by these mAbs. Two-dimensional gel analysis and immunoblotting of total proteins from adult rat dorsal root ganglion verified mAb specificity in situ, and showed that differentially phosphorylated isoforms of NF-M and NF-H occur in vivo. This provided additional evidence that mAbs can detect all 4 phosphorylation- dependent endogenous isoelectric variants of NF-H and NF-M.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal ArticleDOI
TL;DR: Findings show that there are areas in the cortex in the anterior and dorsal part of the STS that are specialized for the analysis of moving visual stimuli, that neurons responsive primarily to faces are found predominantly in areas TPO, TEa, and TEm, and that architectural subdivisions of the temporal lobe cortex are related to neuronal response properties.
Abstract: In order to gather evidence on functional subdivisions of the temporal lobe neocortex of the primate, the activity of more than 2600 single neurons was recorded in 10 myelo- and cytoarchitecturally defined subdivisions of the cortex in the superior temporal sulcus (STS) and inferior temporal gyrus of the anterior part of the temporal lobe of 5 hemispheres of 3 macaque monkeys. First, convergence of different modalities into each area was investigated. Areas TS and TAa, in the upper part of this region, were found to receive visual as well as auditory inputs. Areas TPO, PGa, and IPa, in the depths of the STS, received visual, auditory, and somatosensory inputs. Areas TEa, TEm, TE3, TE2, and TE1, which extend from the ventral bank of the STS through the inferior temporal gyrus, were primarily unimodal visual areas. Second, of the cells with visual responses, it was found that some neurons in areas TS-IPa could be activated only by moving visual stimuli, whereas the great majority of neurons in areas TEa-TE1 could be activated by stationary visual stimuli. Third, it was found that there were few sharply discriminating visual neurons in areas TS and TAa; of the sharply discriminating visual neurons in other areas, however, neurons that responded primarily to faces were found predominantly in areas TPO, TEa, and TEm (in which they represented 20% of the neurons with visual responses); neurons that were tuned to relatively simple visual stimuli such as sine-wave gratings, color, or simple shapes were relatively common in areas TEa, TEm, and TE3; and neurons that responded only to complex visual stimuli were common in areas IPa, TEa, TEm, and TE3. These findings show inter alia that areas TPO, PGa, and IPa are multimodal, that the inferior temporal gyrus areas are primarily unimodal, that there are areas in the cortex in the anterior and dorsal part of the STS that are specialized for the analysis of moving visual stimuli, that neurons responsive primarily to faces are found predominantly in areas TPO, TEa, and TEm, and that architectural subdivisions of the temporal lobe cortex are related to neuronal response properties.

Journal ArticleDOI
TL;DR: Results indicate that there are optimum levels of Ca2+ influx that promote normal neurite elongation and growth cone movements; these 2 components of outgrowth appear to have differential sensitivities to Ca2+.
Abstract: Neurite outgrowth from isolated, identified molluscan (Helisoma trivolvis) neurons in culture can be suppressed by neurotransmitters and electrical activity, both of which increase intraneuronal Ca2+ levels (Haydon et al., 1984; Cohan et al., 1986, 1987). We explored the possibility of a causal relationship between Ca2+ influx from the cell exterior and neurite outgrowth using a spectrum of pharmacological manipulations known to affect transmembrane Ca2+ flux. Ca2+ ionophore A23187, an agent expected to increase Ca2+ influx, suppressed both elongation and motile growth cone structures (i.e., filopodia and lamellipodia) in a dose-dependent (10(8)-10(6) M) and reversible manner. Furthermore, high concentrations of Ca2+ channel blockers (La3+, Cd2+, Co2+; e.g., 10(-4) M La3+) suppressed both elongation and growth cone movements. These data support previous experiments, which indicated that neurite outgrowth is dependent upon a specific range of intracellular Ca2+ concentrations (Connor, 1986; Cohan et al., 1987). However, tests of the dose-dependency of the effects of Ca2+ channel blockers on outgrowth revealed that specific, low concentrations of Ca2+ channel blockers (e.g., 10(-5) M La3+) caused, simultaneously, a reduction of growth cone filopodia and an acceleration of elongation. Consistent with the results using low levels of Ca2+ channel blockers, reduced extracellular Ca2+-stimulated neurite elongation while suppressing growth cone motility. Finally, neurotransmitter regulation of neurite outgrowth was shown to require influx of extracellular Ca2+; serotonin inhibition of neuron B19 was prevented by La3+ (10(-5) M) or by incubation in a reduced Ca2+ environment. Taken together, these results indicate that there are optimum levels of Ca2+ influx that promote normal neurite elongation and growth cone movements; these 2 components of outgrowth appear to have differential sensitivities to Ca2+.

Journal ArticleDOI
TL;DR: Among those peptides contained in perivascular afferent fibers and administered intravenously, substance P and neurokinin A (NKA), but not calcitonin gene-related peptide, caused a dose-dependent extravasation in the dura and conjunctiva of rats.
Abstract: Utilizing 125I-BSA administered intravenously, a simple, reliable, and sensitive method was established for the detection of plasma protein extravasation in the dura of rats and guinea pigs following chemical, electrical, or immunological stimulation. Extravasated 125I-BSA or Evans blue was noted in the dura and conjunctiva but not in the temporalis muscle of saline-perfused rats following intravenous capsaicin, 1 mumol/kg. Capsaicin-induced extravasation was mediated by unmyelinated and small myelinated fibers since leakage did not develop in adult animals in whom these fibers were destroyed by capsaicin pretreatment (50 mg/kg) as neonates. An ipsilateral increase in Evans blue and 125I-BSA was found in the dura, eyelids, lips and gingival mucosa, and snout following electrical stimulation of the rat trigeminal ganglion. This increase was also C-fiber dependent. Among those peptides contained in perivascular afferent fibers and administered intravenously, substance P (SP) and neurokinin A (NKA), but not calcitonin gene-related peptide, caused a dose-dependent extravasation in the dura and conjunctiva of rats. Neonatal capsaicin pretreatment did not attenuate SP- nor NKA-induced effects in the dura and actually increased extravasation in the conjunctiva. Intravenous administration of 5-HT or bradykinin to normal adult rats or adult rats pretreated as neonates with capsaicin increased levels of 125I-BSA in both the dura and the conjunctiva. Histamine and prostaglandin E2, on the other hand, caused protein leakage in the conjunctiva but not in the dura of rats; however, histamine did induce extravasation in the dura of guinea pigs.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: The data demonstrate the presence of a homogeneous class of 5- HT1 binding sites in bovine caudate that is pharmacologically distinct from previously defined 5-HT1A, 5-ht1B, 5 - HT1C, 4-HT2, 3-HT3 receptor subtypes.
Abstract: 3H-5-Hydroxytryptamine (5-HT) binding sites were analyzed in bovine brain membranes. The addition of either the 5-HT1A-selective drug 8-OH- DPAT (100 nM) or the 5-HT1C-selective drug mesulergine (100 nM) to the assay resulted in a 5–10% decrease in specific 3H-5-HT binding. Scatchard analysis revealed that the simultaneous addition of both drugs decreased the Bmax of 3H-5-HT binding by 10–15% without affecting the KD value (1.8 +/- 0.3 nM). Competition studies using a series of pharmacologic agents revealed that the sites labeled by 3H-5-HT in bovine caudate in the presence of 100 nM 8-OH-DPAT and 100 nM mesulergine appear to be homogeneous. 5-HT1A selective agents such as 8- OH-DPAT, ipsapirone, and buspirone display micromolar affinities for these sites. RU 24969 and (-)pindolol are approximately 2 orders of magnitude less potent at these sites than at 5-HT1B sites which have been identified in rat brain. Agents displaying nanomolar potencies for 5-HT1C sites such as mianserin and mesulergine are 2–3 orders of magnitude less potent at the 3H-5-HT binding sites in bovine caudate. In addition, both 5-HT2- and 5-HT3-selective agents are essentially inactive at these binding sites. These 3H-5-HT sites display nanomolar affinity for 5-carboxyamidotryptamine, 5-methoxytryptamine, metergoline, and 5-HT. Apparent Ki values of 10–100 nM are obtained for d-LSD, RU 24969, methiothepin, tryptamine, methysergide, and yohimbine, whereas I-LSD and corynanthine are significantly less potent. In addition, these 3H-5-HT labeled sites are regulated by guanine nucleotides and calcium. Regional studies indicate that this class of sites is most dense in the basal ganglia but exists in all regions of bovine brain. These data therefore demonstrate the presence of a homogeneous class of 5-HT1 binding sites in bovine caudate that is pharmacologically distinct from previously defined 5-HT1A, 5-HT1B, 5- HT1C, 5-HT2, and 5-HT3 receptor subtypes. We therefore suggest that this class of sites be designated the 5-HT1D subtype of binding sites labeled by 3H-5-HT.

Journal ArticleDOI
TL;DR: Astrocytes in vitro play a role in the formation, extent, and configuration of the junctional complexes in brain endothelium, whose diffusion barrier may likewise be influenced by astrocyte in vivo.
Abstract: The belts of endothelial tight junctions, which impede diffusion between blood and brain, were reduced to fragmentary, small junctions in subcultured brain endothelium. When cocultured with the capillaries' nearest neighbor, the astrocytes, these endothelial tight junctions were enhanced in length, width, and complexity, as seen by en face views of the cell membranes with freeze-fracture electron microscopy. Gap junctions, common in brain endothelium in vitro but absent in mature brain capillaries in vivo, were markedly diminished in area from among the enhanced tight junctions of the cocultures. Thus, astrocytes in vitro play a role in the formation, extent, and configuration of the junctional complexes in brain endothelium, whose diffusion barrier may likewise be influenced by astrocytes in vivo.

Journal ArticleDOI
TL;DR: Electrophysiological and anatomical results suggest that O/A interneurons make synaptic contact with pyramidal cells and may mediate feedforward and feedback inhibition onto CA 1 pyramid cells.
Abstract: Electrophysiological and anatomical techniques were used to determine the role, in the hippocampal circuitry, of local circuit neurons located at the oriens/alveus border (O/A interneurons). Intracellular recording from these cells showed that their response characteristics were clearly nonpyramidal: high input resistance, short membrane time constant, short-duration action potential, pronounced, brief afterhyperpolarizations (AHP), and nondecremental firing during intrasomatic depolarizing current pulses. Intracellular Lucifer yellow (LY) injection and subsequent fluorescence microscopy confirmed their nonpyramidal nature. O/A interneuron somata were bipolar or multipolar; their dendrites projected mostly parallel to the alveus, except for 1 or 2 processes that turned perpendicularly, and ascended through stratum oriens and pyramidale and into radiatum. Their axons were seen to branch profusely in stratum oriens and pyramidale. Simultaneous intracellular recordings from O/A interneurons and CA 1 pyramidal cells showed that pyramidal cells directly excite these interneurons. Major hippocampal afferents also directly excited the O/A interneurons. In a small number of interneuron-pyramidal pairs, stimulation of the O/A interneuron directly inhibited pyramidal cells. In one case, reciprocal connections were observed: The pyramidal cell excited the interneuron, and the interneuron inhibited the pyramidal cell. In 1 interneuron-to-interneuron pair, an inhibitory connection from O/A interneuron to stratum pyramidale interneuron was also observed. With intracellular HRP injections into O/A interneurons and subsequent electron microscopy, we observed that O/A interneuron axons made contacts with pyramidal and nonpyramidal cells. HRP-filled symmetric synaptic contacts were found on pyramidal cell dendrites and somata. HRP-filled axons also made contacts with pyramidal cell initial segments. HRP-filled O/A interneuron axon contacts were also found on nonpyramidal cell dendrites in stratum oriens. These electrophysiological and anatomical results suggest that O/A interneurons make synaptic contact with pyramidal cells and may mediate feedforward and feedback inhibition onto CA 1 pyramidal cells.

Journal ArticleDOI
TL;DR: The hypothesis that the LC is involved in the CNS response to stress is supported and additional evidence that the activity of LC noradrenergic neurons increases in association with sympathoadrenal activation is provided.
Abstract: The present experiment was designed to explore the stress-relatedness of activity in noradrenergic neurons of the locus coeruleus (LC) of behaving cats. A stressor was defined as a stimulus that elicited a significant sympathoadrenal activation as measured by plasma norepinephrine level and heart rate. According to this definition, exposure to 15 min of 100 dB white noise or 15 min of restraint was stressful in cats. In contrast, exposure to inaccessible rats for 15 min was behaviorally activating but nonstressful. The single-unit activity of noradrenergic neurons in the LC of behaving cats was examined under these conditions. The stressful stimuli elicited a significant increase in LC neuronal activity for the entire 15 min stressor duration, whereas the behaviorally activating but nonstressful stimulus elicited no significant change in the activity of these neurons. These results provide evidence that behavioral activation per se is not sufficient to evoke a tonic activation of these neurons. Rather, these data support the hypothesis that the LC is involved in the CNS response to stress and provide additional evidence that the activity of LC noradrenergic neurons increases in association with sympathoadrenal activation.

Journal ArticleDOI
TL;DR: The distribution of nicotinic acetylcholine receptors (AChR) in the rat and mouse central nervous system has been mapped in detail using monoclonal antibodies to receptors purified from chicken and rat brain, and the immunohistochemical evidence has strongly indicated that neuronal AChR undergoes axonal transport.
Abstract: The distribution of nicotinic acetylcholine receptors (AChR) in the rat and mouse central nervous system has been mapped in detail using monoclonal antibodies to receptors purified from chicken and rat brain. Initial studies in the chicken brain indicate that different neuronal AChRs are contained in axonal projections to the optic lobe in the midbrain from neurons in the lateral spiriform nucleus and from retinal ganglion cells. Monoclonal antibodies to the chicken and rat brain AChRs also label apparently identical regions in all major subdivisions of the central nervous system of rats and mice, and this pattern is very similar to previous reports of 3H-nicotine binding, but quite different from that of alpha-bungarotoxin binding. In several instances, the immunohistochemical evidence has strongly indicated that neuronal AChR undergoes axonal transport. The clearest example of this has been in the visual system, where labeling was observed in the retina, the optic nerve and tract, and in all of the major terminal fields of the optic nerve except the ventral suprachiasmatic nucleus. This was confirmed in unilateral enucleation experiments in the rat, where labeling was greatly reduced in the contralateral optic tract, ventral lateral geniculate nucleus, pretectal nuclei receiving direct visual input, superficial layers of the superior colliculus, and medical terminal nucleus, and was significantly reduced in the dorsal lateral geniculate nucleus. Clear neuronal labeling was also observed in dorsal root ganglion cells and in cranial nerve nuclei containing motoneurons that innervate branchial arch-derived muscles, although the possibility that neuronal AChR undergoes axonal transport in the latter cells was not tested experimentally.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: It is concluded that neurons in culture are able to compartmentalize MAP2 and tau into their appropriate processes and only attain an apparently homogeneous population of one of these MAPs after the neuron has assumed dendritic and axonal features.
Abstract: We sought to determine whether the strict segregation of MAP2 and tau into somatodendritic and axonal compartments in situ was maintained in dissociated neuronal cultures of the rat cerebrum. Cultures grown under serum-free conditions were immunolabeled with monoclonal antibodies specific for MAP2 and tau. At 14 d after plating, a clear distinction between MAP2- and tau-immunoreactive neurites was apparent. MAP2- immunoreactive neurites were relatively short, thick, tapering, and branched. Tau-immunoreactive neurites formed a crisscrossing meshwork of long, fine-caliber neurites, which, in more densely plated cultures, had a tendency to form thick, ropelike fascicles. Unlike the MAP2 pattern, tau antibodies labeled somata only lightly. Since distinct populations of neurites were labeled with the 2 antibodies, we sought to observe the development of the topographically distinct compartments by double-labeled immunocytochemistry with both polyclonal and monoclonal antibodies to MAP2 and tau. Cells observed within the first 8 hr after plating demonstrated equally intense MAP2 and tau immunoreactivity in a coextensive distribution throughout the cell body and initial neurites. By 16 hr, some neurites began to assume dendritic and axonal features; however, many such processes contained reaction product for both MAP2 and tau. Beginning at this time, neurites that appeared axonal showed a progressively weaker reaction with MAP2 antibodies, and neurites that appeared dendritic showed a progressively weaker reaction with tau antibodies. In most neurites the diminution appeared to occur uniformly over the entire extent of the neurite. During this transformation period there were occasional axon-like neurites that contained MAP2 immunoreactivity proximally, while tau immunoreactivity extended over the entire length of the neurite. We conclude that neurons in culture are able to compartmentalize MAP2 and tau into their appropriate processes and only attain an apparently homogeneous population of one of these MAPs after the neuron has assumed dendritic and axonal features. The analysis also lends indirect support to the hypothesis that microtubule-associated proteins (MAPs) form this association at the distal extent of the growing neurite.

Journal ArticleDOI
TL;DR: To study neuronal migration, migrating granule neurons in microcultures prepared from early postnatal cerebellum have been analyzed with time- lapse, video-enhanced differential interference contrast microscopy and revealed a saltatory pattern of advance along the glial fiber.
Abstract: To study neuronal migration, migrating granule neurons in microcultures prepared from early postnatal cerebellum have been analyzed with time- lapse, video-enhanced differential interference contrast microscopy. The morphology of migrating neurons resembles the elongated forms of migrating neurons described both in vivo and in vitro (Rakic, 1971; Hatten et al., 1984). The neuron closely apposes its soma along the glial fiber and extends a thickened leading process in the direction of migration. This leading tip is highly motile, with several filopodial extensions. Intracellular vesicular structures extend from the nucleus into the leading process of migrating neurons in vitro. Quantitation of the motions of migrating neurons revealed a saltatory pattern of advance along the glial fiber. Periods of cell soma movement at the rate of 56 +/- 26 micron/hr along the glial fiber are punctuated by periods during which the cell soma slows to a complete stop. The overall rate of migration is 33 +/- 20 micron/hr. The growing tip of the leading process rapidly extends and retracts, resulting in a net advance along the glial fiber. However, the periods of the extension and retraction of the leading process growing tip are not synchronized with the motions of the cell soma.

Journal ArticleDOI
TL;DR: Each efferent target must receive inputs from neurons whose synaptic connections within area 17 are significantly different from those of neurons projecting to other targets, which suggests that distinct visual response properties should be associated with each projection.
Abstract: The relationship between pyramidal cell morphology and efferent target was investigated in layer 6 of cat primary visual cortex (area 17). Layer 6 has 2 projections, one to the lateral geniculate nucleus (LGN) and another to the visual claustrum. The cells of origin of each projection were identified by retrograde transport of fluorescent latex microspheres. The labeled cells were visualized in brain slices prepared from area 17, using an epifluorescence compound microscope modified for intracellular recording. Individual retrogradely labeled cells were penetrated and intracellularly stained with Lucifer yellow to visualize the patterns of axons and dendrites associated with each projection. The neurons that give rise to the 2 projections had very different patterns of dendrites and local axonal collaterals, but the patterns within each group were highly stereotyped. The differences between their axonal collaterals were particularly dramatic. Claustrum projecting cells had fine, horizontally directed collaterals that arborized exclusively in layer 6 and lower layer 5. Most LGN projecting cells had virtually no horizontal arborization in layer 6. Instead, they sent widespread collaterals vertically, which arborized extensively in layer 4. The apical dendrites of the 2 groups also differed markedly. Claustrum projecting cells had apical dendrites reaching to layer 1, with branches in layer 5 only, while LGN projecting cells never had an apical dendrite reaching higher than layer 3, with side branches in layers 5 and 4. Therefore, each efferent target must receive inputs from neurons whose synaptic connections within area 17 are significantly different from those of neurons projecting to other targets. This further suggests that distinct visual response properties should be associated with each projection. In addition to the claustrum and LGN projecting cells, about 20% of layer 6 pyramidal neurons lacked an efferent axon. Morphologically, most resembled LGN projecting neurons, but a few had characteristics of claustrum projecting cells. These neurons may represent cells that either failed to make an efferent connection or cells that lost an efferent axon during development. Their frequency suggests that such intrinsic, presumably excitatory, neurons may play a significant role in cortical processing.