scispace - formally typeset
Search or ask a question

Showing papers in "The Scientific World Journal in 2001"


Journal ArticleDOI
TL;DR: The formula for estimating an individual's life span given the frailty index value is presented and it is proposed that it may be used as a proxy measure of aging.
Abstract: This paper develops a method for appraising health status in elderly people. A frailty index was defined as the proportion of accumulated deficits (symptoms, signs, functional impairments, and laboratory abnormalities). It serves as an individual state variable, reflecting severity of illness and proximity to death. In a representative database of elderly Canadians we found that deficits accumulated at 3% per year, and show a gamma distribution, typical for systems with redundant components that can be used in case of failure of a given subsystem. Of note, the slope of the index is insensitive to the individual nature of the deficits, and serves as an important prognostic factor for life expectancy. The formula for estimating an individual's life span given the frailty index value is presented. For different patterns of cognitive impairments the average within-group index value increases with the severity of the cognitive impairment, and the relative variability of the index is significantly reduced. Finally, the statistical distribution of the frailty index sharply differs between well groups (gamma distribution) and morbid groups (normal distribution). This pattern reflects an increase in uncompensated deficits in impaired organisms, which would lead to illness of various etiologies, and ultimately to increased mortality. The accumulation of deficits is as an example of a macroscopic variable, i.e., one that reflects general properties of aging at the level of the whole organism rather than any given functional deficiency. In consequence, we propose that it may be used as a proxy measure of aging.

1,900 citations


Journal ArticleDOI
TL;DR: The ecological impacts and environmental controls of harmful blooms are addressed, with an emphasis on the ecology, physiology, and management of cyanobacterial bloom taxa.
Abstract: Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia), toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human) health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria) are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis) and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria) that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia) are capable of fixing atmospheric nitrogen (N2), enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from zooplankton to further up the food chain. Both N2- and non-N2-fixing genera participate in mutualistic and symbiotic associations with microorganisms, higher plants, and animals. These associations appear to be of great benefit to their survival and periodic dominance. In this review, we address the ecological impacts and environmental controls of harmful blooms, with an emphasis on the ecology, physiology, and management of cyanobacterial bloom taxa. Combinations of physical, chemical, and biotic features of natural waters function in a synergistic fashion to determine the sensitivity of water bodies. In waters susceptible to blooms, human activities in water- and airsheds have been linked to the extent and magnitudes of blooms. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on nitrogen (N) and/or phosphorus (P). The types and amount of nutrient input constraints depend on hydrologic, climatic, geographic, and geologic factors, which interact with anthropogenic and natural nutrient input regimes. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of harmful blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by enhanced flushing and artificial mixing (in conjunction with nutrient input constraints) can be particularly effective alternatives. Implications of various management strategies, based on combined ecophysiological and environmental considerations, are discussed.

882 citations


Journal ArticleDOI
TL;DR: A general overview of the nature and important mechanisms behind internal loading of phosphorus (P), which is a phenomenon appearing frequently in shallow, eutrophic lakes upon a reduction of the external loading, is given in this paper.
Abstract: This paper gives a general overview of the nature and important mechanisms behind internal loading of phosphorus (P), which is a phenomenon appearing frequently in shallow, eutrophic lakes upon a reduction of the external loading. Lake water quality is therefore not improved as expected. In particular summer concentrations rise and P retention may be negative during most of the summer. The P release originates from a pool accumulated in the sediment when the external loading was high. In most lake sediments, P bound to redox-sensitive iron compounds or P fixed in more or less labile organic forms constitute major fractions--forms that are potentially mobile and eventually may be released to the lake water. The duration of the recovery period following P loading reduction depends on the loading history, but it may last for decades in lakes with a high sediment P accumulation. During the phase of recovery, both the duration and net P release rates from the sediment seem to decline progressively. Internal P loading is highly influenced by the biological structure as illustrated by lakes shifting from the turbid to the clearwater state as a result of, for example, biomanipulation. In these lakes P concentrations may be reduced to 50% of the pre-biomanipulation level and the period with negative retention during summer can thus be reduced considerably. The duration of internal loading can be reduced significantly by different restoration methods such as dredging to remove accumulated P or addition of iron or alum to elevate the sorption capacity of sediments. However, an important prerequisite for achieving long-term benefits to water quality is a sufficient reduction of the external P loading.

339 citations


Journal ArticleDOI
TL;DR: This paper is a review of recent information on litterfall, standing stock of benthic organic matter, breakdown rates, and fungal colonization of organic matter in streams, and the fate of detritus in streams.
Abstract: This paper is a review of recent (< or =10 years) information on litterfall, standing stock of benthic organic matter, breakdown rates, and fungal colonization of organic matter in streams. In some cases, recent research reinforces the findings of classic reference papers. In other cases, the additional knowledge provided by recent research introduces a higher variation in the processes analyzed. In many aspects, especially those concerning stream organic matter, the review is biased towards the temperate North American streams, reflecting the fact that most research was carried out there. However, during the 1990s European studies increased enormously, especially those related with instream processes, such as leaf litter decomposition. The first part of this review analyzes the origin of allochthonous organic matter to streams (litterfall, retention, and storage), and it provides data on the amounts estimated in different streams and on the methodology used in the studies. The second part analyzes the fate of detritus in streams: mechanisms of leaf breakdown, relative importance of fungi and bacteria, factors affecting the activity of microbial decomposers, and chemical changes of leaf litter during decomposition. A list of breakdown rates of several different leaf species is given, together with the methodology used, and the main characteristics of the incubation streams.

335 citations


Journal ArticleDOI
TL;DR: The benefits of N are described, but also how N in the wrong form or place results in harmful effects on humans and animals, as well as to ecological and environmental systems.
Abstract: Nitrogen (N) is applied worldwide to produce food. It is in the atmosphere, soil, and water and is essential to all life. N for agriculture includes fertilizer, biologically fixed, manure, recycled crop residue, and soil-mineralized N. Presently, fertilizer N is a major source of N, and animal manure N is inefficiently used. Potential environmental impacts of N excreted by humans are increasing rapidly with increasing world populations. Where needed, N must be efficiently used because N can be transported immense distances and transformed into soluble and/or gaseous forms that pollute water resources and cause greenhouse effects. Unfortunately, increased amounts of gaseous N enter the environment as N2O to cause greenhouse warming and as NH3 to shift ecological balances of natural ecosystems. Large amounts of N are displaced with eroding sediments in surface waters. Soluble N in runoff or leachate water enters streams, rivers, and groundwater. High-nitrate drinking water can cause methemoglobinemia, while nitrosamines are associated with various human cancers. We describe the benefits, but also how N in the wrong form or place results in harmful effects on humans and animals, as well as to ecological and environmental systems.

261 citations


Journal ArticleDOI
TL;DR: The results suggest the applicability of a new food-web manipulation (increased stocking with filter-feeding fish) for controlling cyanobacteria blooms in hypereutrophic lakes and the method has great potential as an important component of an integrated approach to counteract cyanob bacteria blooms.
Abstract: Lake Donghu is a 32-km2 shallow, subtropical lake near the Yangtze River (P.R. China) that has experienced dramatic changes in the past five decades. These changes include: (1) a trophic state change from mesotrophy to hypertrophy; (2) dense blooms of cyanobacteria during every summer from the 1970s to 1984; (3) a cessation of blooms starting in 1985, with no recurrence; and (4) an increase, coincident with bloom declines, in the production of silver and bighead carp (filter-feeders) by more than tenfold. There are several possible explanations for the disappearance of blooms, including changes in nutrient concentrations, increased zooplankton grazing, and increased grazing on algae by fish. The long-term data suggest that changes in nutrients or in zooplankton were not important, but that the remarkably increased fish densities might have played the key role. To test this hypothesis, in situ enclosure experiments were conducted in three years. The main conclusions are as follows: (1) an increased stocking of the lake with carp played a decisive role in the elimination of cyanobacteria blooms; (2) both silver and bighead carp can eliminate cyanobacteria blooms directly by grazing; (3) zooplankton cannot suppress the blooms; and (4) the lake still is vulnerable to the outbreak of blooms, should fish grazing decline. The critical biomass of carp is approximately 50 g m3. The results suggest the applicability of a new food-web manipulation (increased stocking with filter-feeding fish) for controlling cyanobacteria blooms in hypereutrophic lakes. The approach differs from traditional biomanipulation in Europe and North America, where piscivores are added to control planktivores, and this in turn increases zooplankton and decreases algae. The new biomanipulation method is being used or being tested to counteract cyanobacteria blooms in many Chinese lakes such as Lake Dianchi in Yunnan Province, Lake Chaohu in Anhui Province, and Lake Taihu in Jiangsu Province. The method has great potential as an important component of an integrated approach to counteract cyanobacteria blooms, especially in lakes where nutrient inputs cannot be reduced sufficiently, and where zooplankton cannot effectively control phytoplankton production.

216 citations


Journal ArticleDOI
TL;DR: A passive sampler optimised for monthly measurements of NH3 is reported here, together with its application in the U.K. National Ammonia Monitoring Network.
Abstract: Numerous passive samplers based on the ‘Palmes-tube’ have been developed for ambient air monitoring. In each case, the diffusion path length and/or crosssectional area are modified to achieve the desired sampling rate. ‘Tube-type’ samplers are low sensitivity samplers suitable for long-term monitoring, whereas the ‘badge-type’ samplers have faster sampling rates suited to short-term monitoring. In the U.K., diffusion tubes are widely used for monitoring nitrogen dioxide (NO2) and ammonia (NH3). The open-ended diffusion tubes are prone to positive bias caused by incursion of wind eddies, leading to a shortening of the diffusion path. By using a porous membrane at the inlet, wind incursion is prevented, but an additional diffusion resistance is imposed and it is necessary to calibrate the tubes against a reference method to obtain an effective sampling rate. For NO2 sampling, positive bias also arises from the reaction of NO with O3 within the sampler. The interference from the chemical reaction is severe close to NO sources, with errors up to 30% for curbside locations when using the ‘tubetype’ sampler. In rural areas, where NO concentrations are small relative to NO2, these errors are small. In some implementations, there is also a negative bias over long sampling periods caused by the degradation of trapped NO2. The low sampling rates of diffusion tubes make them too uncertain for use at background NH3 concentrations (<1 μg NH3 m-3) where they significantly overestimate concentrations. Badge-type samplers such as the ‘Willems badge’ samplers permit accurate sampling at low ambient NH3 concentrations, but suffer from saturation at high concentrations and sensitivity to wind speed. A passive sampler optimised for monthly measurements of NH3 is reported here, together with its application in the U.K. National Ammonia Monitoring Network.

196 citations


Journal ArticleDOI
TL;DR: The Second International Nitrogen Conference was designed to facilitate communications among all stakeholders in the “nitrogen community” of the world and to encourage every country to make optimal choices about N management in food production and consumption, energy production and use, and environmental protection.
Abstract: Human efforts to produce food and energy are changing the nitrogen (N) cycle of the Earth. Many of these changes are highly beneficial for humans, while others are detrimental to people and the environment. These changes transcend scientific disciplines, geographical boundaries, and political structures. They challenge the creative minds of natural and social scientists, economists, engineers, business leaders, and decision makers. The Second International Nitrogen Conference was designed to facilitate communications among all stakeholders in the “nitrogen community” of the world. The Conference participants’ goal in the years and decades ahead is to encourage every country to make optimal choices about N management in food production and consumption, energy production and use, and environmental protection. Scientific findings and recommendations for decision makers that emerged from the Conference are presented.

182 citations


Journal ArticleDOI
TL;DR: The concept of homeodynamics that is introduced here offers a radically new and all-embracing concept that departs from the classical homeostatic idea that emphasises the stability of the internal milieu toward perturbation.
Abstract: Ideas of homeostasis derive from the concept of the organism as an open system. These ideas can be traced back to Heraclitus. Hopkins, Bernard, Hill, Cannon, Weiner and von Bertalanffy developed further the mechanistic basis of turnover of biological components, and Schoenheimer and Rittenberg were pioneers of experimental approaches to the problems of measuring pool sizes and dynamic fluxes. From the second half of the twentieth century, a biophysical theory mainly founded on self-organisation and Dynamic Systems Theory allowed us to approach the quantitative and qualitative analysis of the organised complexity that characterises living systems. This combination of theoretical framework and more refined experimental techniques revealed that feedback control of steady states is a mode of operation that, although providing stability, is only one of many modes and may be the exception rather than the rule. The concept of homeodynamics that we introduce here offers a radically new and all-embracing concept that departs from the classical homeostatic idea that emphasises the stability of the internal milieu toward perturbation. Indeed, biological systems are homeodynamic because of their ability to dynamically self-organise at bifurcation points of their behaviour where they lose stability. Consequently, they exhibit diverse behaviour; in addition to monotonic stationary states, living systems display complex behaviour with all its emergent characteristics, i.e., bistable switches, thresholds, waves, gradients, mutual entrainment, and periodic as well as chaotic behaviour, as evidenced in cellular phenomena such as dynamic (supra)molecular organisation and flux coordination. These processes may proceed on different spatial scales, as well as across time scales, from the very rapid processes within and between molecules in membranes to the slow time scales of evolutionary change. It is dynamic organisation under homeodynamic conditions that make possible the organised complexity of life.

123 citations


Journal ArticleDOI
TL;DR: Reaching the management goal of halved anthropogenic N and P loads at minimum cost will require better understanding of biogeochemical nutrient cycles, economic evaluation of proposed measures, and improved stakeholder participation.
Abstract: The Baltic is a large, brackish sea (4 x 105 km2) extending from 54ÅN to ~66ÅN, with a fourfold larger drainage area (population 8 x 107). Surface salinity (2 to 8 PSU) and hence biodiversity is low. In the last century, annual nutrient loads increased to 106 metric tons N and 5 x104 ton P. Eutrophication is evident in the N-limited south, where cyanobacteria fix 2 to 4 x 105 ton N each summer, Secchi depths have been halved, and O2-deficient bottom areas have spread. Production remains low in the P-limited north. In nutrient-enriched coastal areas, phytoplankton blooms, toxic at times, and filamentous macroalgae reduce amenity values. Loads need to be reduced of both N, to reduce production, and P, to limit N-fixing cyanobacterial blooms. When large N-load reductions have been achieved locally, algal biomass has declined. So far, P loads have been reduced more than N loads. If this continues, a P-limited Baltic proper may result, very different from previous N-limited conditions. Reaching the management goal of halved anthropogenic N and P loads at minimum cost will require better understanding of biogeochemical nutrient cycles, economic evaluation of proposed measures, and improved stakeholder participation.

107 citations


Journal ArticleDOI
TL;DR: A switch from a turbid to a stable clear state often can be invoked by means of biomanipulation in the form of a temporary reduction of the fish stock, which buffer the impacts of increased nutrient loads until they become too high.
Abstract: Ponds and shallow lakes can be very clear with abundant submerged plants, or very turbid due to a high concentration of phytoplankton and suspended sediment particles. These strongly contrasting ecosystem states have been found to represent alternative attractors with distinct stabilizing feedback mechanisms. In the turbid state, the development of submerged vegetation is prevented by low underwater light levels. The unprotected sediment frequently is resuspended by wave action and by fish searching for food causing a further decrease of transparency. Since there are no plants that could serve as refuges, zooplankton is grazed down by fish to densities insufficient to control algal blooms. In contrast, the clear state in eutrophic shallow lakes is dominated by aquatic macrophytes. The submerged macrophytes prevent sediment resuspension, take up nutrients from the water, and provide a refuge for zooplankton against fish predation. These processes buffer the impacts of increased nutrient loads until they become too high. Consequently, the response of shallow lakes to eutrophication tends to be catastrophic rather than smooth, and various lakes switch back and forth abruptly between a clear and a turbid state repeatedly without obvious external forcing. Importantly, a switch from a turbid to a stable clear state often can be invoked by means of biomanipulation in the form of a temporary reduction of the fish stock.

Journal ArticleDOI
TL;DR: An organism with an internal skeleton must accumulate calcium while maintaining body fluids at a well-regulated, constant calcium concentration, and neither calcium absorption nor excretion plays a significant regulatory role.
Abstract: An organism with an internal skeleton must accumulate calcium while maintaining body fluids at a well-regulated, constant calcium concentration Neither calcium absorption nor excretion plays a significant regulatory role Instead, isoionic calcium uptake and release by bone surfaces causes plasma calcium to be well regulated Very rapid shape changes of osteoblasts and osteoclasts, in response to hormonal signals, modulate the available bone surfaces so that plasma calcium can increase when more low-affinity bone calcium binding sites are made available and can decrease when more high-affinity binding sites are exposed The intracellular free calcium concentration of body cells is also regulated, but because cells are bathed by fluids with vastly higher calcium concentration, their major regulatory mechanism is severe entry restriction All cells have a calcium-sensing receptor that modulates cell function via its response to extracellular calcium In duodenal cells, the apical calcium entry structure functions as both transporter and a vitamin D–responsive channel The channel upregulates calcium entry, with intracellular transport mediated by the mobile, vitamin D–dependent buffer, calbindin D9K, which binds and transports more than 90% of the transcellular calcium flux Fixed intracellular calcium binding sites can, like the body's skeleton, take up and release calcium that has entered the cell, but the principal regulatory tool of the cell is restricted entry

Journal ArticleDOI
TL;DR: The results demonstrate that in shallow lakes, unpredictable external forces, such as hurricanes, can play a major role in ecosystem dynamics and should be given to how they might affect long-term lake management programs.
Abstract: In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisnera, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake’s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous autumn. In mid-October 1999, this category 1 hurricane passed just to the south of the lake, with wind velocities over the lake surface reaching 90 km h-1 at their peak. Output from a three-dimensional hydrodynamic / sediment transport model indicates that during the storm, current velocities in surface waters of the lake increased from near 5 cm s-1 to as high as 100 cm s-1. These strong velocities were associated with large-scale uplifting and horizontal transport of fine-grained sediments from the lake bottom. Water quality data collected after the storm confirmed that the hurricane resulted in lake-wide nutrient and suspended solids concentrations far in excess of those previously documented for a 10-year data set. These conditions persisted through the winter months and may have negatively impacted plants that remained in the lake at the end of the 1999 growing season. The results demonstrate that in shallow lakes, unpredictable external forces, such as hurricanes, can play a major role in ecosystem dynamics. In regions where these events are common (e.g., the tropics and subtropics), consideration should be given to how they might affect long-term lake management programs.

Journal ArticleDOI
TL;DR: Analysis of the underlying NH3 emission inventory shows that sheep emissions may have been underestimated and nonagricultural sources overestimated relative to emissions from cattle, and the combined approach provides the basis to assess NHx responses across the U.K. to international emission controls.
Abstract: As measures are implemented internationally to reduce SO2 and NOx emissions, attention is falling on the contribution of NH3 emissions to acidification, nitrogen eutrophication, and aerosol formation. In the U.K., a monitoring network has been established to measure the spatial distribution and long-term trends in atmospheric gaseous NH3 and aerosol NH4+. At the same time, an atmospheric chemistry and transport model, FRAME, has been developed with a focus on reduced nitrogen (NHx). The monitoring data are important to evaluate the model, while the model is essential for a more detailed spatial assessment. The national network is established with over 80 sampling locations. Measurements of NH3 and NH4+ (at up to 50 sites) have been made using a new low-cost denuder-filterpack system. Additionally, improved passive sampling methods for NH3 have been applied to explore local variability. The measurements confirm the high spatial variability of NH3 (annual means 0.06 to 11 microg NH3 m(-3)), consistent with its nature as a primary pollutant emitted from ground-level sources, while NH4+, being a slowly formed secondary product, shows much less spatial variability (0.14 to 2.4 mg NH4+ m(-3)). These features are reproduced in the FRAME model, which provides estimates at a 5-km level. Analysis of the underlying NH3 emission inventory shows that sheep emissions may have been underestimated and nonagricultural sources overestimated relative to emissions from cattle. The combination of model and measurements is applied to estimate spatial patterns of dry deposition to different vegetation types. The combined approach provides the basis to assess NHx responses across the U.K. to international emission controls.

Journal ArticleDOI
TL;DR: Development of an analytical technique using high performance liquid chromatography-negative ion electrospray tandem mass spectrometry (HPLC-ESMSMS) permitted the survey of PFCs in livers and blood plasma of wildlife on a global scale.
Abstract: The environmental distribution of fluorinated organic compounds (FOCs) has been less well described than the other halogenated hydrocarbons such as chlorinated and brominated compounds This is despite the fact that FOCs have been used in a wide variety of products and applications for more than 50 years FOCs are resistant to hydrolysis, photolysis, microbial degradation, or metabolism by vertebrates due to the high energy of carbon–fluorine bond In particular, perfluorinated (fully fluorinated) compounds (PFCs) have the potential to persist in the environment But, until recently, the extent and magnitude of environmental distribution of PFCs was unknown Recent development of an analytical technique for PFCs using high performance liquid chromatography-negative ion electrospray tandem mass spectrometry (HPLC-ESMSMS)[1] permitted the survey of PFCs in livers and blood plasma of wildlife on a global scale[2]

Journal ArticleDOI
TL;DR: The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.
Abstract: Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time-PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF 2alpha-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the alpha-chloralose-anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.

Journal ArticleDOI
TL;DR: A set of simple mathematical models based upon Newton's second law of motion to describe the physics of heading suggest heading is usually safe but occasionally dangerous, depending on key characteristics of both the player and the ball.
Abstract: To better understand the risk and safety of heading a soccer ball, the author created a set of simple mathematical models based upon Newton's second law of motion to describe the physics of heading. These models describe the player, the ball, the flight of the ball before impact, the motion of the head and ball during impact, and the effects of all of these upon the intensity and the duration of acceleration of the head. The calculated head accelerations were compared to those during presumably safe daily activities of jumping, dancing, and head nodding and also were related to established criteria for serious head injury from the motor vehicle crash literature. The results suggest heading is usually safe but occasionally dangerous, depending on key characteristics of both the player and the ball. Safety is greatly improved when players head the ball with greater effective body mass, which is determined by a player"s size, strength, and technique. Smaller youth players, because of their lesser body mass, are more at risk of potentially dangerous headers than are adults, even when using current youth size balls. Lower ball inflation pressure reduces risk of dangerous head accelerations. Lower pressure balls also have greater "touch" and "playability", measured in terms of contact time and contact area between foot and ball during a kick. Focus on teaching proper technique, the re-design of age-appropriate balls for young players with reduced weight and inflation pressure, and avoidance of head contact with fast, rising balls kicked at close range can substantially reduce risk of subtle brain injury in players who head soccer balls.

Journal ArticleDOI
TL;DR: It was found that the materials from which the collector was made had no significant effect on the composition of dissolved organic N (DON), and the use of a biocide was found to be very important during sampling and storage of samples before analysis.
Abstract: Published observations of organic nitrogen (N) compounds in precipitation go back almost a century. Several different methods have been used to measure both the total and ionic concentrations of N. There is therefore some uncertainty as to whether reported “organic N” is real, or simply the result of uncertainties in chemical analyses or inadequate sampling methods. We found that the materials from which the collector was made (polypropylene, steel, or glass) had no significant effect on the composition of dissolved organic N (DON). The use of a biocide was found to be very important during sampling and storage of samples before analysis. We set up a network of seven collectors across the U.K., from the Cairngorms to Dorset, all operating to the same protocol, and including a biocide. Samples were analysed centrally, using proven methods. Over 6 months, organic N contributed about 20% to the total N in U.K. precipitation, but with a large variation across the country. This means that current estimates of wet deposited N to the U.K., which are based only on the ammonium and nitrate concentrations, are too small. Organic N is not an artefact, but a real problem that needs to be addressed.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated how Granzyme B (GrB) affects mitochondria utilizing an in vitro cell-free system and determined that cyt c release and permeability transition are initiated by distinct mechanisms.
Abstract: Many cell death pathways converge at the mitochondria to induce release of apoptogenic proteins and permeability transition, resulting in the activation of effector caspases responsible for the biochemical and morphological alterations of apoptosis. The death receptor pathway has been described as a triphasic process initiated by the activation of apical caspases, a mitochondrial phase, and then the final phase of effector caspase activation. Granzyme B (GrB) activates apical and effector caspases as well as promotes cytochrome c (cyt c) release and loss of mitochondrial membrane potential. We investigated how GrB affects mitochondria utilizing an in vitro cell-free system and determined that cyt c release and permeability transition are initiated by distinct mechanisms. The cleavage of cytosolic BID by GrB results in truncated BID, initiating mitochondrial cyt c release. BID is the sole cytosolic protein responsible for this phenomenon in vitro, yet caspases were found to participate in cyt c release in some cells. On the other hand, GrB acts directly on mitochondria in the absence of cytosolic S100 proteins to open the permeability transition pore and to disrupt the proton electrochemical gradient. We suggest that GrB acts by two distinct mechanisms on mitochondria that ultimately lead to mitochondrial dysfunction and cellular demise.

Journal ArticleDOI
TL;DR: Angina, the prototypic vasoocclusive pain, is a radiating chest pain that occurs when heart muscle gets insufficient blood because of coronary artery disease, while sensory neurons innervating the heart are richly endowed with an ion channel that is opened by, and perfectly tuned for, the lactic acid released by muscle ischemia.
Abstract: Angina, the prototypic vasoocclusive pain, is a radiating chest pain that occurs when heart muscle gets insufficient blood because of coronary artery disease. Other examples of vasoocclusive pain include the acute pain of heart attack and the intermittent pains that accompany sickle cell anemia and peripheral artery disease. All these conditions cause ischemia - insufficient oxygen delivery for local metabolic demand - and this releases lactic acid as cells switch to anaerobic metabolism. Recent discoveries demonstrate that sensory neurons innervating the heart are richly endowed with an ion channel that is opened by, and perfectly tuned for, the lactic acid released by muscle ischemia.

Journal ArticleDOI
TL;DR: A mouse bioassay procedure has shown that ozone/terpene reactions produce products that are more irritating than their precursors, although the agents responsible for the deleterious effects remain to be determined.
Abstract: This paper reviews recent studies in the field of "indoor chemistry"--reactions among indoor pollutants. Advances have occurred in a number of areas. A mouse bioassay procedure has shown that ozone/terpene reactions produce products that are more irritating than their precursors, although the agents responsible for the deleterious effects remain to be determined. Indoor ozone/terpene reactions have been demonstrated to produce hydroxyl radicals, hydrogen peroxide, sub-micron particles, and ultrafine particles. New analytical techniques such as LC/MS and thermal desorption mass spectrometry have greatly improved our knowledge of the condensed-phase species associated with such particles. Indeed, the latter approach has identified a number of short-lived or thermally labile species, including organic hydroperoxides, peroxy-hemiacetals, and secondary ozonides, which would be missed by more conventional techniques. Investigators are making inroads into the poorly understood area of indoor heterogeneous chemistry. Systems studied include ozone/HVAC components, ozone/paint, and ozone/carpets. Another heterogeneous process that has been further examined is the indoor formation of nitrous acid through NO2/surface chemistry. Emissions from indoor sources that contribute to, or are altered by, indoor chemistry have also received attention. Researchers have expanded our awareness of reactive chemicals that can emanate from wood coatings and other products commonly used indoors. In a related vein, a number of recent investigations have shown that emissions from materials can be significantly altered by indoor chemistry. On the theoretical side, an outdoor atmospheric chemistry model has been modified for use as an indoor air model, the effects of ventilation rates on indoor chemistry have been simulated, and initial steps have been taken in applying computational fluid dynamics (CFD) methods to indoor chemistry.

Journal ArticleDOI
TL;DR: This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity that are classified in appropriate chemical groups and reported on their pharmacological effects, mechanisms of action, and other properties.
Abstract: This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity. They have been classified in appropriate chemical groups and data are reported on their pharmacological effects, mechanisms of action, and other properties.

Journal ArticleDOI
TL;DR: While a consistent pattern is emerging from reports of nitrous oxide (N2O) and nitric oxide (NO) emissions from soils of the Amazon region, far too few data exist for the Cerrado region to assess the impact of land use changes on N oxide emissions.
Abstract: This paper reviews reports of nitrous oxide (N2O) and nitric oxide (NO) emissions from soils of the Amazon and Cerrado regions of Brazil. N2O is a stable greenhouse gas in the troposphere and participates in ozone-destroying reactions in the stratosphere, whereas NO participates in tropospheric photochemical reactions that produce ozone. Tropical forests and savannas are important sources of atmospheric N2O and NO, but rapid land use change could be affecting these soil emissions of N oxide gases. The five published estimates for annual emissions of N2O from soils of mature Amazonian forests are remarkably consistent, ranging from 1.4 to 2.4 kg N ha(-1) year(-1), with a mean of 2.0 kg N ha(-1) year(-1). Estimates of annual emissions of NO from Amazonian forests are also remarkably similar, ranging from 1.4 to 1.7 kg N ha(-1) year(-1), with a mean of 1.5 kg N ha(-1) year(-1). Although a doubling or tripling of N2O has been observed in some young (< or = 2 years) cattle pastures relative to mature forests, most Amazonian pastures have lower emissions than the forests that they replace, indicating that forest-to-pasture conversion has, on balance, probably reduced regional emissions slightly (<10%). Secondary forests also have lower soil emissions than mature forests. The same patterns apply for NO emissions in Amazonia. At the only site in Cerrado where vegetation measurements have been made N2O emissions were below detection limits and NO emissions were modest (approximately 0.4 kg N ha(-1) year(-1)). Emissions of NO doubled after fire and increased by a factor of ten after wetting dry soil, but these pulses lasted only a few hours to days. As in Amazonian pastures, NO emissions appear to decline with pasture age. Detectable emissions of N2O have been measured in soybean and corn fields in the Cerrado region, but they are modest relative to fluxes measured in more humid tropical agricultural regions. No measurements of NO from agricultural soils in the Cerrado region have been made, but we speculate that they could be more important than N2O emissions in this relatively dry climate. While a consistent pattern is emerging from these studies in the Amazon region, far too few data exist for the Cerrado region to assess the impact of land use changes on N oxide emissions.

Journal ArticleDOI
TL;DR: In this article, the authors measured inorganic N (nitrate and ammonium) concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests.
Abstract: Nitrogen (N) emissions in Asian countries are predicted to increase over the next several decades. An understanding of the mechanisms that control temporal and spatial fluctuation of N export to forest streams is important not only to quantify critical loads of N, N saturation status, and soil acidification N dynamics and budgets in Japanese forested watersheds is not clear due to the lack of regional comparative studies on stream N chemistry. To address the lack of comparative studies, we measured inorganic N (nitrate and ammonium) concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests. N concentrations in stream water during base flow and high flow periods were monitored, and N mineralization potential in soil was measured using batch incubation experiments. Higher nitrate concentrations in stream water were present in central Japan, an area that receives high rates of atmospheric N deposition. In northern Japan, snowmelt resulted in increased nitrate concentrations in stream water. The potential net N mineralization rate was higher in surface soil than in subsurface soil, and the high potential for N mineralization in the surface soil partly contributed to the increase in nitrate concentration in stream water during a storm event. Regional differences in the atmospheric N deposition and seasonality of precipitation and high discharge are principal controls on the concentrations and variations of nitrates in stream water in forested watersheds of Japan.

Journal ArticleDOI
TL;DR: Current N fertilizer application rates for different container-grown nursery ornamental plants, the amount of nitrate leaching or runoff from containers, and the potential for nitrate contamination of ground and surface water are discussed.
Abstract: Containerized plant production represents an extremely intensive agricultural practice; 40,000 to 300,000 containers may occupy one acre of surface area to which a large amount of chemical fertilizer is applied. Currently, recommended fertilizer application rates for the production of containerized nursery ornamental plants are in excess of plant requirements, and up to 50% of the applied fertilizers may run off or be leached from containers. Among the nutrients leached or allowed to runoff, nitrogen (N) is the most abundant and is of major concern as the source of ground and surface water pollution. In this report, current N fertilizer application rates for different container-grown nursery ornamental plants, the amount of nitrate leaching or runoff from containers, and the potential for nitrate contamination of ground and surface water are discussed. In contrast, our best N management practices include: (1) applying fertilizers based on plant species need; (2) improving potting medium�s nutrient holding capacity using obscure mineral additives; (3) using controlled-release fertilizers; and (4) implementing zero runoff irrigation or fertigation delivery systems that significantly reduce nitrate leaching or runoff in containerized plant production and encourage dramatic changes in N management.

Journal ArticleDOI
TL;DR: Agrium developed a low-cost controlled release urea (CRU) product for use in field crops such as grain corn, canola, wheat, and other small grain cereals.
Abstract: Controlled release nitrogen (N) fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU) product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha(-1). Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching.

Journal ArticleDOI
TL;DR: In this article, the authors compared maize (Zea mays L.) and oilseed rape (Brassica napus L.) cultivars with respect to their agronomic N efficiency (yield at a given N supply), N uptake efficiency (N accumulation at the given n supply), and N utilization efficiency (dry matter yield per unit N taken up by the plant).
Abstract: To improve nitrogen (N) efficiency in agriculture, integrated N management strategies that take into consideration improved fertilizer, soil, and crop management practices are necessary. This paper reports results of field experiments in which maize (Zea mays L.) and oilseed rape (Brassica napus L.) cultivars were compared with respect to their agronomic N efficiency (yield at a given N supply), N uptake efficiency (N accumulation at a given N supply), and N utilization efficiency (dry matter yield per unit N taken up by the plant). Under conditions of high N supply, significant differences among maize cultivars were found in shoot N uptake, soil nitrate depletion during the growing season, and the related losses of nitrate through leaching after the growing season. Experiments under conditions of reduced N supply indicated a considerable genotypic variation in reproductive yield formation of both maize and oilseed rape. High agronomic efficiency was achieved by a combination of high uptake and utilization efficiency (maize), or exclusively by high uptake efficiency (rape). N-efficient cultivars of both crops were characterized by maintenance of a relatively high N-uptake activity during the reproductive growth phase. In rape this trait was linked with leaf area and photosynthetic activity of leaves. We conclude that growing of N-efficient cultivars may serve as an important element of integrated nutrient management strategies in both low- and high-input agriculture.

Journal ArticleDOI
TL;DR: Modelling and experimental approaches suggest that plant and microbial response to nitrogen is affected by management, and field data indicate that ecosystem recovery from prolonged elevated inputs of nitrogen may take many years, or even decades, even after the removal of plant and litter nitrogen stores.
Abstract: Atmospheric nitrogen deposition has been shown to affect both the structure and the function of heathland ecosystems. Heathlands are semi-natural habitats and, as such, undergo regular management by mowing or burning. Different forms of management remove more or less nutrients from the system, so habitat management has the potential to mitigate some of the effects of atmospheric deposition. Data from a dynamic vegetation model and two field experiments are presented. The first involves nitrogen addition following different forms of habitat management. The second tests the use of habitat management to promote heathland recovery after a reduction in nitrogen deposition. Both modelling and experimental approaches suggest that plant and microbial response to nitrogen is affected by management. Shoot growth and rates of decomposition were lowest in plots managed using more intensive techniques, including mowing with litter removal and a high temperature burn. Field data also indicate that ecosystem recovery from prolonged elevated inputs of nitrogen may take many years, or even decades, even after the removal of plant and litter nitrogen stores which accompanies the more intensive forms of habitat management.

Journal ArticleDOI
TL;DR: Positive aspects and limitations of the passive sampling approach are presented and specific examples of the spatial distributions of ozone in three parks within California are given using interpolation maps.
Abstract: The National Park Service (NPS) has tested and used passive ozone samplers for several years to get baseline values for parks and to determine the spatial variability within parks. Experience has shown that the Ogawa passive samplers can provide ±10% accuracy when used with a quality assurance program consisting of blanks, duplicates, collocated instrumentation, and a standard operating procedure that carefully guides site operators. Although the passive device does not meet EPA criteria as a certified method (mainly, that hourly values be measured), it does provide seasonal summed values of ozone. The seasonal ozone concentrations from the passive devices can be compared to other monitoring to determine baseline values, trends, and spatial variations. This point is illustrated with some kriged interpolation maps of ozone statistics. Passive ozone samplers were used to get elevational gradients and spatial distributions of ozone within a park. This was done in varying degrees at Mount Rainier, Olympic, Sequoia–Kings Canyon, Yosemite, Joshua Tree, Rocky Mountain, and Great Smoky Mountains national parks. The ozone has been found to vary by factors of 2 and 3 within a park when average ozone is compared between locations. Specific examples of the spatial distributions of ozone in three parks within California are given using interpolation maps. Positive aspects and limitations of the passive sampling approach are presented.

Journal ArticleDOI
TL;DR: In this article, the authors describe the progress in member states' compliance with the Nitrates Directive during the second period (1996-1999), with a focus on the agricultural practices and action pro grammes.
Abstract: From 1991 onward, the European Union (EU) member states have had to comply with the Nitrates Directive. The aim of this directive is to sustainably protect ground and surface waters from pollution with nitrogen (nitrate) originating from agriculture. Agriculture is, on an EU level, the largest single source of nitrate (runoff, leaching) pollution, although households and industries also contribute to some extent. An important element in the directive is the reporting every 4 years on the monitoring of ground- and surface-water quality. Furthermore, all 15 member states are compelled to designate so-called Nitrate Vulnerable Zones (NVZs). These are regions where the nitrate concentrations in the groundwater amount to 50 mg/l or more. In addition to Codes of Good Agricultural Practice, valid on a countrywide basis and often consisting of voluntary-based measures, specific Action Programmes with mandatory measures have to be developed for the NVZs. The first reporting period ended in 1995. This paper describes the progress in member states’ compliance with the Nitrates Directive during the second period (1996–1999), with a focus on the agricultural practices and action pro- grammes. An evaluation of the member states’ reports shows that good progress is being made on the farmers’ awareness of the need to comply with EU regulations on the protection of the aquatic environment. Action programmes are valuable tools to enforce measures that lead to a reduction of the water pollution by agricultural activities. Regional projects show that significant improvements can be achieved (e.g., reduced fertiliser inputs) while maintaining crop yields and thus maintaining the economic potential of agriculture.