scispace - formally typeset
Search or ask a question
JournalISSN: 2072-6651

Toxins 

Multidisciplinary Digital Publishing Institute
About: Toxins is an academic journal published by Multidisciplinary Digital Publishing Institute. The journal publishes majorly in the area(s): Medicine & Biology. It has an ISSN identifier of 2072-6651. It is also open access. Over the lifetime, 6034 publications have been published receiving 124652 citations.
Topics: Medicine, Biology, Mycotoxin, Venom, Aflatoxin


Papers
More filters
Journal ArticleDOI
26 Oct 2010-Toxins
TL;DR: Recent advances in understanding of cisplatin nephrotoxicity are summarized and it is discussed how these advances might lead to more effective prevention.
Abstract: Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-induced renal cell death. It has also become apparent that inflammation provoked by injury to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This review summarizes recent advances in our understanding of cisplatin nephrotoxicity and discusses how these advances might lead to more effective prevention.

1,265 citations

Journal ArticleDOI
05 Jul 2010-Toxins
TL;DR: Genes encoding novel SEs as well as SEls with untested emetic activity are widely represented in S. aureus, and their role in pathogenesis may be underestimated.
Abstract: Staphylococcus aureus produces a wide variety of toxins including staphylococcal enterotoxins (SEs; SEA to SEE, SEG to SEI, SER to SET) with demonstrated emetic activity, and staphylococcal-like (SEl) proteins, which are not emetic in a primate model (SElL and SElQ) or have yet to be tested (SElJ, SElK, SElM to SElP, SElU, SElU2 and SElV). SEs and SEls have been traditionally subdivided into classical (SEA to SEE) and new (SEG to SElU2) types. All possess superantigenic activity and are encoded by accessory genetic elements, including plasmids, prophages, pathogenicity islands, vSa genomic islands, or by genes located next to the staphylococcal cassette chromosome (SCC) implicated in methicillin resistance. SEs are a major cause of food poisoning, which typically occurs after ingestion of different foods, particularly processed meat and dairy products, contaminated with S. aureus by improper handling and subsequent storage at elevated temperatures. Symptoms are of rapid onset and include nausea and violent vomiting, with or without diarrhea. The illness is usually self-limiting and only occasionally it is severe enough to warrant hospitalization. SEA is the most common cause of staphylococcal food poisoning worldwide, but the involvement of other classical SEs has been also demonstrated. Of the new SE/SEls, only SEH have clearly been associated with food poisoning. However, genes encoding novel SEs as well as SEls with untested emetic activity are widely represented in S. aureus, and their role in pathogenesis may be underestimated.

848 citations

Journal ArticleDOI
11 Dec 2014-Toxins
TL;DR: An updated overview of the known active Bt toxins to date is provided and a less well characterized secretory protein with no amino acid similarity to Vips has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein).
Abstract: Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.

504 citations

Journal ArticleDOI
01 Oct 2012-Toxins
TL;DR: The data published since 2004 concerning the contamination of animal feed with single or combinations of mycotoxins and the occurrence of these co-contaminations are reviewed and highlighted.
Abstract: Mycotoxins are secondary metabolites produced by fungi especially those belonging to the genus Aspergillus, Penicillum and Fusarium. Mycotoxin contamination can occur in all agricultural commodities in the field and/or during storage, if conditions are favourable to fungal growth. Regarding animal feed, five mycotoxins (aflatoxins, deoxynivalenol, zearalenone, fumonisins and ochratoxin A) are covered by EU legislation (regulation or recommendation). Transgressions of these limits are rarely observed in official monitoring programs. However, low level contamination by Fusarium toxins is very common (e.g., deoxynivalenol (DON) is typically found in more than 50% of the samples) and co-contamination is frequently observed. Multi-mycotoxin studies reported 75%–100% of the samples to contain more than one mycotoxin which could impact animal health at already low doses. Co-occurrence of mycotoxins is likely to arise for at least three different reasons (i) most fungi are able to simultaneously produce a number of mycotoxins, (ii) commodities can be contaminated by several fungi, and (iii) completed feed is made from various commodities. In the present paper, we reviewed the data published since 2004 concerning the contamination of animal feed with single or combinations of mycotoxins and highlighted the occurrence of these co-contaminations.

503 citations

Journal ArticleDOI
13 Jun 2013-Toxins
TL;DR: The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.
Abstract: Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

460 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023433
2022900
2021814
2020808
2019747
2018529