scispace - formally typeset
Search or ask a question

Showing papers in "Transportation Research Part C-emerging Technologies in 2015"


Journal ArticleDOI
TL;DR: A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
Abstract: Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.

1,521 citations


Journal ArticleDOI
TL;DR: Two mathematical programming models aimed at optimal routing and scheduling of unmanned aircraft, and delivery trucks, in this new paradigm of parcel delivery are provided, motivated by a scenario in which an unmanned aerial vehicle works in collaboration with a traditional delivery truck to distribute parcels.
Abstract: Once limited to the military domain, unmanned aerial vehicles are now poised to gain widespread adoption in the commercial sector. One such application is to deploy these aircraft, also known as drones, for last-mile delivery in logistics operations. While significant research efforts are underway to improve the technology required to enable delivery by drone, less attention has been focused on the operational challenges associated with leveraging this technology. This paper provides two mathematical programming models aimed at optimal routing and scheduling of unmanned aircraft, and delivery trucks, in this new paradigm of parcel delivery. In particular, a unique variant of the classical vehicle routing problem is introduced, motivated by a scenario in which an unmanned aerial vehicle works in collaboration with a traditional delivery truck to distribute parcels. We present mixed integer linear programming formulations for two delivery-by-drone problems, along with two simple, yet effective, heuristic solution approaches to solve problems of practical size. Solutions to these problems will facilitate the adoption of unmanned aircraft for last-mile delivery. Such a delivery system is expected to provide faster receipt of customer orders at less cost to the distributor and with reduced environmental impacts. A numerical analysis demonstrates the effectiveness of the heuristics and investigates the tradeoffs between using drones with faster flight speeds versus longer endurance.

851 citations


Journal ArticleDOI
Abstract: Currently autonomous or self-driving vehicles are at the heart of academia and industry research because of its multi-faceted advantages that includes improved safety, reduced congestion, lower emissions and greater mobility. Software is the key driving factor underpinning autonomy within which planning algorithms that are responsible for mission-critical decision making hold a significant position. While transporting passengers or goods from a given origin to a given destination, motion planning methods incorporate searching for a path to follow, avoiding obstacles and generating the best trajectory that ensures safety, comfort and efficiency. A range of different planning approaches have been proposed in the literature. The purpose of this paper is to review existing approaches and then compare and contrast different methods employed for the motion planning of autonomous on-road driving that consists of (1) finding a path, (2) searching for the safest manoeuvre and (3) determining the most feasible trajectory. Methods developed by researchers in each of these three levels exhibit varying levels of complexity and performance accuracy. This paper presents a critical evaluation of each of these methods, in terms of their advantages/disadvantages, inherent limitations, feasibility, optimality, handling of obstacles and testing operational environments. Based on a critical review of existing methods, research challenges to address current limitations are identified and future research directions are suggested so as to enhance the performance of planning algorithms at all three levels. Some promising areas of future focus have been identified as the use of vehicular communications (V2V and V2I) and the incorporation of transport engineering aspects in order to improve the look-ahead horizon of current sensing technologies that are essential for planning with the aim of reducing the total cost of driverless vehicles. This critical review on planning techniques presented in this paper, along with the associated discussions on their constraints and limitations, seek to assist researchers in accelerating development in the emerging field of autonomous vehicle research.

599 citations


Journal ArticleDOI
TL;DR: The gradient boosting tree method strategically combines additional trees by correcting mistakes made by its previous base models, therefore, potentially improves prediction accuracy and model interpretability in freeway travel time prediction.
Abstract: Tree based ensemble methods have reached a celebrity status in prediction field. By combining simple regression trees with ‘poor’ performance, they usually produce high prediction accuracy. In contrast to other machine learning methods that have been treated as black-boxes, tree based ensemble methods provide interpretable results, while requiring little data preprocessing, are able to handle different types of predictor variables, and can fit complex nonlinear relationship. These properties make the tree based ensemble methods good candidates for solving travel time prediction problems. However, applications of tree-based ensemble algorithms in traffic prediction area are limited. In this paper, we employ a gradient boosting regression tree method (GBM) to analyze and model freeway travel time to improve the prediction accuracy and model interpretability. The gradient boosting tree method strategically combines additional trees by correcting mistakes made by its previous base models, therefore, potentially improves prediction accuracy. Different parameters’ effect on model performance and correlations of input–output variables are discussed in details by using travel time data provided by INRIX along two freeway sections in Maryland. The proposed method is, then, compared with another popular ensemble method and a bench mark model. Study results indicate that the GBM model has its considerable advantages in freeway travel time prediction.

506 citations


Journal ArticleDOI
TL;DR: This work presents methods to estimate average daily origin–destination trips from triangulated mobile phone records of millions of anonymized users, which form the basis for much of the analysis and modeling that inform transportation planning and investments.
Abstract: In this work, we present methods to estimate average daily origin–destination trips from triangulated mobile phone records of millions of anonymized users. These records are first converted into clustered locations at which users engage in activities for an observed duration. These locations are inferred to be home, work, or other depending on observation frequency, day of week, and time of day, and represent a user’s origins and destinations. Since the arrival time and duration at these locations reflect the observed (based on phone usage) rather than true arrival time and duration of a user, we probabilistically infer departure time using survey data on trips in major US cities. Trips are then constructed for each user between two consecutive observations in a day. These trips are multiplied by expansion factors based on the population of a user’s home Census Tract and divided by the number of days on which we observed the user, distilling average daily trips. Aggregating individuals’ daily trips by Census Tract pair, hour of the day, and trip purpose results in trip matrices that form the basis for much of the analysis and modeling that inform transportation planning and investments. The applicability of the proposed methodology is supported by validation against the temporal and spatial distributions of trips reported in local and national surveys.

500 citations


Journal ArticleDOI
TL;DR: In this paper, a real-time adaptive signal phase allocation algorithm using connected vehicle data is proposed to optimize the phase sequence and duration by solving a two-level optimization problem, which minimizes the total vehicle delay and minimizes queue length.
Abstract: The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.

395 citations


Journal ArticleDOI
TL;DR: This work presents a flexible, modular, and computationally efficient software system that estimates multiple aspects of travel demand using call detail records from mobile phones in conjunction with open- and crowdsourced geospatial data, census records, and surveys.
Abstract: Rapid urbanization is placing increasing stress on already burdened transportation infrastructure. Ubiquitous mobile computing and the massive data it generates presents new opportunities to measure the demand for this infrastructure, diagnose problems, and plan for the future. However, before these benefits can be realized, methods and models must be updated to integrate these new data sources into existing urban and transportation planning frameworks for estimating travel demand and infrastructure usage. While recent work has made great progress extracting valid and useful measurements from new data resources, few present end-to-end solutions that transform and integrate raw, massive data into estimates of travel demand and infrastructure performance. Here we present a flexible, modular, and computationally efficient software system to fill this gap. Our system estimates multiple aspects of travel demand using call detail records (CDRs) from mobile phones in conjunction with open- and crowdsourced geospatial data, census records, and surveys. We bring together numerous existing and new algorithms to generate representative origin–destination matrices, route trips through road networks constructed using open and crowd-sourced data repositories, and perform analytics on the system’s output. We also present an online, interactive visualization platform to communicate these results to researchers, policy makers, and the public. We demonstrate the flexibility of this system by performing analyses on multiple cities around the globe. We hope this work will serve as unified and comprehensive guide to integrating new big data resources into customary transportation demand modeling.

342 citations


Journal ArticleDOI
TL;DR: The viability of a proactive real-time traffic monitoring strategy evaluating operation and safety simultaneously was explored and it was found that congestion on urban expressways was highly localized and time-specific.
Abstract: The advent of Big Data era has transformed the outlook of numerous fields in science and engineering. The transportation arena also has great expectations of taking the advantage of Big Data enabled by the popularization of Intelligent Transportation Systems (ITS). In this study, the viability of a proactive real-time traffic monitoring strategy evaluating operation and safety simultaneously was explored. The objective is to improve the system performance of urban expressways by reducing congestion and crash risk. In particular, Microwave Vehicle Detection System (MVDS) deployed on an expressway network in Orlando was utilized to achieve the objectives. The system consisting of 275 detectors covers 75 miles of the expressway network, with average spacing less than 1 mile. Comprehensive traffic flow parameters per lane are continuously archived on one-minute interval basis. The scale of the network, dense deployment of detection system, richness of information and continuous collection turn MVDS as the ideal source of Big Data. It was found that congestion on urban expressways was highly localized and time-specific. As expected, the morning and evening peak hours were the most congested time periods. The results of congestion evaluation encouraged real-time safety analysis to unveil the effects of traffic dynamics on crash occurrence. Data mining (random forest) and Bayesian inference techniques were implemented in real-time crash prediction models. The identified effects, both indirect (peak hour, higher volume and lower speed upstream of crash locations) and direct (higher congestion index downstream to crash locations) congestion indicators confirmed the significant impact of congestion on rear-end crash likelihood. As a response, reliability analysis was introduced to determine the appropriate time to trigger safety warnings according to the congestion intensity. Findings of this paper demonstrate the importance to jointly monitor and improve traffic operation and safety. The Big Data generated by the ITS systems is worth further exploration to bring all their full potential for more proactive traffic management.

325 citations


Journal ArticleDOI
TL;DR: In this paper, a receding horizon control approach for automated driving systems is proposed, where tactical-level lane change decisions and control-level accelerations are jointly evaluated under a central mathematical framework.
Abstract: This contribution puts forward a receding horizon control approach for automated driving systems, where tactical-level lane change decisions and control-level accelerations are jointly evaluated under a central mathematical framework. The key idea is that controlled vehicles predictively determine discrete desired lane sequences and continuous accelerations to minimise a cost function reflecting undesirable future situations. The interactions between controlled vehicles and surrounding vehicles are captured in the cost function. The approach is flexible in terms of application to controller design for both non-cooperative control systems where controlled vehicles only optimise their own cost and cooperative control systems where controlled vehicles coordinate their decisions to optimise the collective cost. To determine the controller behaviour, the problem is formulated as a differential game where controlled vehicles make decisions based on the expected behaviour of other vehicles. The control decisions are updated at regular frequency, using the newest information regarding the state of controlled vehicles and surrounding vehicles available. A problem decomposition technique is employed to reduce the dimensionality of the original problem by introducing a finite number of sub-problems and an iterative algorithm based on Pontryagin’s Principle is used to solve sub-problems efficiently. The proposed controller performance is demonstrated via numerical examples. The results show that the proposed approach can produce efficient lane-changing manoeuvres while obeying safety and comfort requirements. Particularly, the approach generates optimal lane change decisions in the predicted future, including strategic overtaking, cooperative merging and selecting a safe gap.

258 citations


Journal ArticleDOI
TL;DR: In this article, a multi-class network equilibrium flow pattern is described by a mathematical program, which is solved by an iterative procedure based on the proposed equilibrium framework, the charging station location problem is then formulated as a bi-level mathematical program and solved by a genetic-algorithm-based procedure.
Abstract: This paper explores how to optimally locate public charging stations for electric vehicles on a road network, considering drivers’ spontaneous adjustments and interactions of travel and recharging decisions. The proposed approach captures the interdependency of different trips conducted by the same driver by examining the complete tour of the driver. Given the limited driving range and recharging needs of battery electric vehicles, drivers of electric vehicles are assumed to simultaneously determine tour paths and recharging plans to minimize their travel and recharging time while guaranteeing not running out of charge before completing their tours. Moreover, different initial states of charge of batteries and risk-taking attitudes of drivers toward the uncertainty of energy consumption are considered. The resulting multi-class network equilibrium flow pattern is described by a mathematical program, which is solved by an iterative procedure. Based on the proposed equilibrium framework, the charging station location problem is then formulated as a bi-level mathematical program and solved by a genetic-algorithm-based procedure. Numerical examples are presented to demonstrate the models and provide insights on public charging infrastructure deployment and behaviors of electric vehicles.

244 citations


Journal ArticleDOI
TL;DR: In this paper, a multi-stage optimal control formulation is proposed to obtain the optimal vehicle trajectory on signalized arterials, where both vehicle queue and traffic light status are considered, and a constrained optimization model is proposed as an approximation approach, which can be solved much quicker.
Abstract: Vehicle speed trajectory significantly impacts fuel consumption and greenhouse gas emissions, especially for trips on signalized arterials. Although a large amount of research has been conducted aiming at providing optimal speed advisory to drivers, impacts from queues at intersections are not considered. Ignoring the constraints induced by queues could result in suboptimal or infeasible solutions. In this study, a multi-stage optimal control formulation is proposed to obtain the optimal vehicle trajectory on signalized arterials, where both vehicle queue and traffic light status are considered. To facilitate the real-time update of the optimal speed trajectory, a constrained optimization model is proposed as an approximation approach, which can be solved much quicker. Numerical examples demonstrate the effectiveness of the proposed optimal control model and the solution efficiency of the proposed approach.

Journal ArticleDOI
TL;DR: In this paper, a linear programming formulation for autonomous intersection control (LPAIC) is proposed to account for traffic dynamics within a connected vehicle environment, where a lane based bi-level optimization model is introduced to propagate traffic flows in the network, accounting for dynamic departure time, dynamic route choice, and autonomous intersections control in the context of system optimum network model.
Abstract: This paper develops a novel linear programming formulation for autonomous intersection control (LPAIC) accounting for traffic dynamics within a connected vehicle environment. Firstly, a lane based bi-level optimization model is introduced to propagate traffic flows in the network, accounting for dynamic departure time, dynamic route choice, and autonomous intersection control in the context of system optimum network model. Then the bi-level optimization model is transformed to the linear programming formulation by relaxing the nonlinear constraints with a set of linear inequalities. One special feature of the LPAIC formulation is that the entries of the constraint matrix has only {−1, 0, 1} values. Moreover, it is proved that the constraint matrix is totally unimodular, the optimal solution exists and contains only integer values. It is also shown that the traffic flows from different lanes pass through the conflict points of the intersection safely and there are no holding flows in the solution. Three numerical case studies are conducted to demonstrate the properties and effectiveness of the LPAIC formulation to solve autonomous intersection control.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the implications for intersection capacity and level of service of providing occupants of autonomous cars with ride quality that is equivalent (in terms of maximum rates of longitudinal and lateral acceleration) to two types of rail systems: [urban] light rail transit and [interurban] high-speed rail.
Abstract: Systems that enable high levels of vehicle-automation are now beginning to enter the commercial marketplace. Road vehicles capable of operating independently of real-time human control under an increasing set of circumstances will likely become more widely available in the near future. Such vehicles are expected to bring a variety of benefits. Two such anticipated advantages (relative to human-driver vehicle control) are said to be increased road network capacity and the freeing up of the driver-occupant’s time to engage in their choice of leisurely or economically-productive (non-driving) tasks. In this study we investigate the implications for intersection capacity and level-of-service of providing occupants of automated (without real-time human control), autonomously-operating (without vehicle-to-X communication) cars with ride quality that is equivalent (in terms of maximum rates of longitudinal and lateral acceleration) to two types of rail systems: [urban] light rail transit and [inter-urban] high-speed rail. The literature suggests that car passengers start experiencing discomfort at lower rates of acceleration than car drivers; it is therefore plausible that occupants of an autonomously-operating vehicle may wish to instruct their vehicle to maneuver in a way that provides them greater ride comfort than if the vehicle-control algorithm simply mimicked human-driving-operation. On the basis of traffic microsimulation analysis, we found that restricting the dynamics of autonomous cars to the acceleration/deceleration characteristics of both rail systems leads to reductions in a signalized intersection’s vehicle-processing capacity and increases in delay. The impacts were found to be larger when constraining the autonomous cars’ dynamics to the more-restrictive acceleration/deceleration profile of high-speed rail. The scenarios we analyzed must be viewed as boundary conditions, because autonomous cars’ dynamics were by definition never allowed to exceed the acceleration/deceleration constraints of the rail systems. Appropriate evidence regarding motorists’ preferences does not exist at present; establishing these preferences is an important item for the future research agenda. This paper concludes with a brief discussion of research needs to advance this line of inquiry.

Journal ArticleDOI
TL;DR: In this paper, a variable speed limit (VSL) control algorithm for simultaneously maximizing the mobility, safety and environmental benefit in a Connected Vehicle environment is presented, where a multi-objective optimization function is formulated with the aim of finding a balanced trade-off among mobility and sustainability.
Abstract: This paper presents a Variable Speed Limit (VSL) control algorithm for simultaneously maximizing the mobility, safety and environmental benefit in a Connected Vehicle environment. Development of Connected Vehicle (CV)/Autonomous Vehicle (AV) technology has the potential to provide essential data at the microscopic level to provide a better understanding of real-time driver behavior. This paper investigated a VSL control algorithm using a microscopic approach by focusing on individual driver’s behavior (e.g., acceleration and deceleration) through the use of Model Predictive Control (MPC) approach. A multi-objective optimization function was formulated with the aim of finding a balanced trade-off among mobility, safety and sustainability. A microscopic traffic flow prediction model was used to calculate Total Travel Time (TTT); a surrogate safety measure Time To Collision (TTC) was used to measure instantaneous safety; and, a microscopic fuel consumption model (VT-Micro) was used to measure the environmental impact. Real-time driver’s compliance to the posted speed limit was used to adjust the optimal speed limit values. A sensitivity analysis was conducted to compare the performance of the developed approach for different weights in the objective function and for two different percentages of CV. The results showed that with 100% penetration rate, the developed VSL approach outperformed the uncontrolled scenario consistently, resulting in up to 20% of total travel time reductions, 6–11% of safety improvements and 5–16% reduction in fuel consumptions. Our findings revealed that the scenario which optimized for safety alone, resulted in more optimum improvements as compared to the multi-criteria optimization. Thus, one can argue that in case of 100% penetration rates of CVs, optimizing for safety alone is enough to achieve simultaneous and optimum improvements in all measures. However, mixed results were obtained in case of lower % penetration rate which showed higher collision risk when optimizing for only mobility or fuel consumption. This indicates that with such % penetration rate, multi-criteria optimization is crucial to realize optimum and balanced benefits for the examined measures.

Journal ArticleDOI
TL;DR: In this article, the optimal locations of a specific type of charging facilities for electric vehicles (EVs), wireless power transfer facilities, are investigated, and a mathematical model has been developed to address this problem.
Abstract: In this study, the optimal locations of a specific type of charging facilities for electric vehicles (EVs), wireless power transfer facilities, are investigated. A mathematical model has been developed to address this problem. The objective of the model is to locate a given number of wireless charging facilities for EVs out of a set of candidate facility locations for capturing the maximum traffic flow on a network. The interaction between traffic flow patterns and the location of the charging facilities is incorporated explicitly by applying the stochastic user equilibrium principle to describe electric vehicle drivers’ routing choice behavior. Firstly, the problem is formulated into a mixed-integer nonlinear program, secondly a solution method is developed to obtain the global optimal solution of the linearized program. Numerical experiments are presented to demonstrate the model validity.

Journal ArticleDOI
TL;DR: In this paper, the authors developed an optimization model to be applied by ship operators for determining sailing paths and speeds that minimize operating costs for a ship along a given sequence of ports.
Abstract: Strict limits on the maximum sulphur content in fuel used by ships have recently been imposed in some Emission Control Areas (ECAs). In order to comply with these regulations many ship operators will switch to more expensive low-sulphur fuel when sailing inside ECAs. Since they are concerned about minimizing their costs, it is likely that speed and routing decisions will change because of this. In this paper, we develop an optimization model to be applied by ship operators for determining sailing paths and speeds that minimize operating costs for a ship along a given sequence of ports. We perform a computational study on a number of realistic shipping routes in order to evaluate possible impacts on sailing paths and speeds, and hence fuel consumption and costs, from the ECA regulations. Moreover, the aim is to examine the implications for the society with regards to environmental effects. Comparisons of cases show that a likely effect of the regulations is that ship operators will often choose to sail longer distances to avoid sailing time within ECAs. Another effect is that they will sail at lower speeds within and higher speeds outside the ECAs in order to use less of the more expensive fuel. On some shipping routes, this might give a considerable increase in the total amount of fuel consumed and the CO2 emissions.

Journal ArticleDOI
TL;DR: A hybrid approach integrating the Fuzzy C-Means-based imputation method with the Genetic Algorithm is develop for missing traffic volume data estimation based on inductance loop detector outputs to show the proposed approach outperforms the conventional methods under prevailing traffic conditions.
Abstract: Although various innovative traffic sensing technologies have been widely employed, incomplete sensor data is one of the most major problems to significantly degrade traffic data quality and integrity. In this study, a hybrid approach integrating the Fuzzy C-Means (FCM)-based imputation method with the Genetic Algorithm (GA) is develop for missing traffic volume data estimation based on inductance loop detector outputs. By utilizing the weekly similarity among data, the conventional vector-based data structure is firstly transformed into the matrix-based data pattern. Then, the GA is applied to optimize the membership functions and centroids in the FCM model. The experimental tests are conducted to verify the effectiveness of the proposed approach. The traffic volume data collected at different temporal scales were used as the testing dataset, and three different indicators, including root mean square error, correlation coefficient, and relative accuracy, are utilized to quantify the imputation performance compared with some conventional methods (Historical method, Double Exponential Smoothing, and Autoregressive Integrated Moving Average model). The results show the proposed approach outperforms the conventional methods under prevailing traffic conditions.

Journal ArticleDOI
TL;DR: A route guidance advisory control system based on the aggregated model as a large-scale traffic management strategy that utilizes aggregated traffic states while sub-regional information is partially known is proposed.
Abstract: Recent studies have demonstrated that Macroscopic Fundamental Diagram (MFD), which provides an aggregated model of urban traffic dynamics linking network production and density, offers a new generation of real-time traffic management strategies to improve the network performance. However, the effect of route choice behavior on MFD modeling in case of heterogeneous urban networks is still unexplored. The paper advances in this direction by firstly extending two MFD-based traffic models with different granularity of vehicle accumulation state and route choice behavior aggregation. This configuration enables us to address limited traffic state observability and to scrutinize implications of drivers’ route choice in MFD modeling. We consider a city that is partitioned in a small number of large-size regions (aggregated model) where each region consists of medium-size sub-regions (more detailed model) exhibiting a well-defined MFD. This paper proposes a route guidance advisory control system based on the aggregated model as a large-scale traffic management strategy that utilizes aggregated traffic states while sub-regional information is partially known. In addition, we investigate the effect of equilibrium conditions (i.e. user equilibrium and system optimum) on the overall network performance, in particular MFD functions.

Journal ArticleDOI
TL;DR: An event-driven model that involves three types of events, i.e., departure events, arrival events, and passenger arrival rates change events is proposed that can be used to solve the train scheduling problem for an urban rail transit network.
Abstract: This paper considers the train scheduling problem for an urban rail transit network. We propose an event-driven model that involves three types of events, i.e., departure events, arrival events, and passenger arrival rates change events. The routing of the arriving passengers at transfer stations is also included in the train scheduling model. Moreover, the passenger transfer behavior (i.e., walking times and transfer times of passengers) is also taken into account in the model formulation. The resulting optimization problem is a real-valued nonlinear nonconvex problem. Nonlinear programming approaches (e.g., sequential quadratic programming) and evolutionary algorithms (e.g., genetic algorithms) can be used to solve this train scheduling problem. The effectiveness of the event-driven model is evaluated through a case study.

Journal ArticleDOI
TL;DR: A person-delay-based optimization method is proposed for an intelligent TSP logic that enables bus/signal cooperation and coordination among consecutive signals under the Connected Vehicle environment that greatly reduces bus delay at signalized intersection for all congestion levels and spacing cases considered.
Abstract: In this paper, a person-delay-based optimization method is proposed for an intelligent TSP logic that enables bus/signal cooperation and coordination among consecutive signals under the Connected Vehicle environment. This TSP logic, called TSPCV-C, provides a method to secure the mobility benefit generated by the intelligent TSP logic along a corridor so that the bus delay saved at an upstream intersection is not wasted at downstream intersections. The problem is formulated as a Binary Mixed Integer Linear Program (BMILP) which is solved by standard branch-and-bound method. Minimizing per person delay has been adopted as the criterion for the model. The TSPCV-C is also designed to be conditional. That is, TSP is granted only when the bus is behind schedule and the grant of TSP causes no extra total person delay. The logic developed in this research is evaluated using both analytical and microscopic traffic simulation approaches. Both analytical tests and simulation evaluations compared four scenarios: without TSP (NTSP), conventional TSP (CTSP), TSP with Connected Vehicle (TSPCV), and Coordinated TSP with Connected Vehicle (TSPCV-C). The measures of effectiveness used include bus delay and total travel time of all travelers. The performance of TSPCV-C is compared against conventional TSP (CTSP) under four congestion levels and five intersection spacing cases. The results show that the TSPCV-C greatly reduces bus delay at signalized intersection for all congestion levels and spacing cases considered. Although the TSPCV is not as efficient as TSPCV-C, it still demonstrates sizable improvement over CTSP. An analysis on the intersection spacing cases reveals that, as long as the intersections are not too closely spaced, TSPCV can produce a delay reduction up to 59%. Nevertheless, the mechanism of TSPCV-C is recommended for intersections that are spaced less than 0.5 mile away. Simulation based evaluation results show that the TSPCV-C logic reduces the bus delay between 55% and 75% compared to the conventional TSP. The range of improvement corresponding to the four different v/c ratios tested, which are 0.5, 0.7, 0.9 and 1.0, respectively. No statistically significant negative effects are observed except when the v/c ratio equals 1.0.

Journal ArticleDOI
TL;DR: In this paper, a new weight-based shortest path and vehicle trajectory aided map-matching (stMM) algorithm was developed for real-time Intelligent Transport System (ITS) applications and services.
Abstract: Map-matching algorithms that utilise road segment connectivity along with other data (i.e. position, speed and heading) in the process of map-matching are normally suitable for high frequency (1 Hz or higher) positioning data from GPS. While applying such map-matching algorithms to low frequency data (such as data from a fleet of private cars, buses or light duty vehicles or smartphones), the performance of these algorithms reduces to in the region of 70% in terms of correct link identification, especially in urban and sub-urban road networks. This level of performance may be insufficient for some real-time Intelligent Transport System (ITS) applications and services such as estimating link travel time and speed from low frequency GPS data. Therefore, this paper develops a new weight-based shortest path and vehicle trajectory aided map-matching (stMM) algorithm that enhances the map-matching of low frequency positioning data on a road map. The well-known A ∗ search algorithm is employed to derive the shortest path between two points while taking into account both link connectivity and turn restrictions at junctions. In the developed stMM algorithm, two additional weights related to the shortest path and vehicle trajectory are considered: one shortest path-based weight is related to the distance along the shortest path and the distance along the vehicle trajectory, while the other is associated with the heading difference of the vehicle trajectory. The developed stMM algorithm is tested using a series of real-world datasets of varying frequencies (i.e. 1 s, 5 s, 30 s, 60 s sampling intervals). A high-accuracy integrated navigation system (a high-grade inertial navigation system and a carrier-phase GPS receiver) is used to measure the accuracy of the developed algorithm. The results suggest that the algorithm identifies 98.9% of the links correctly for every 30 s GPS data. Omitting the information from the shortest path and vehicle trajectory, the accuracy of the algorithm reduces to about 73% in terms of correct link identification. The algorithm can process on average 50 positioning fixes per second making it suitable for real-time ITS applications and services.

Journal ArticleDOI
TL;DR: This work presents the first application of support vector regression in the analysis of train delays and compares its performance with the artificial neural networks which have been commonly used for such problems.
Abstract: We propose machine learning models that capture the relation between passenger train arrival delays and various characteristics of a railway system. Such models can be used at the tactical level to evaluate effects of various changes in a railway system on train delays. We present the first application of support vector regression in the analysis of train delays and compare its performance with the artificial neural networks which have been commonly used for such problems. Statistical comparison of the two models indicates that the support vector regression outperforms the artificial neural networks. Data for this analysis are collected from Serbian Railways and include expert opinions about the influence of infrastructure along different routes on train arrival delays.

Journal ArticleDOI
TL;DR: In this article, the authors analyze booking data of a German free-floating carsharing system and show that changes in the weather conditions are a short-term influence as users react to those.
Abstract: Carsharing has become an important addition to existing mobility services over the last years. Today, several different systems are operating in many big cities. For an efficient and economic operation of any carsharing system, the identification of customer demand is essential. This demand is investigated within the presented research by analyzing booking data of a German free-floating carsharing system. The objectives of this paper are to describe carsharing usage and to identify factors that have an influence on the demand for carsharing. Therefore, the booking data are analyzed for temporal aspects, showing recurring patterns of varying lengths. The spatial distribution of bookings is investigated using a geographic information system and indicates a relationship between city structure and areas with high demand for carsharing. The temporal and spatial facets are then combined by applying a cluster analysis to identify groups of days with similar spatial booking patterns and show asymmetries in the spatiotemporal distribution of vehicle supply and demand. Influences on demand can be either short-term or long-term. The paper shows that changes in the weather conditions are a short-term influence as users of free-floating carsharing react to those. Furthermore, the application of a linear regression analysis reveals that socio-demographic data are suitable for making long-term demand predictions since booking numbers show quite a strong correlation with socio-demography, even in a simple model.

Journal ArticleDOI
TL;DR: Results indicate that proposed timetable synchronization optimization model can be used to improve the network performance for transfer passengers significantly.
Abstract: In the urban subway transportation system, passengers may have to make at least one transfer traveling from their origin to destination. This paper proposes a timetable synchronization optimization model to optimize passengers’ waiting time while limiting the waiting time equitably over all transfer station in an urban subway network. The model aims to improve the worst transfer by adjusting the departure time, running time, the dwelling time and the headways for all directions in the subway network. In order to facilitate solution, we develop a binary variables substitute method to deal with the binary variables. Genetic algorithm is applied to solve the problem for its practicality and generality. Finally, the suggested model is applied to Beijing urban subway network and several performance indicators are presented to verify the efficiency of suggested model. Results indicate that proposed timetable synchronization optimization model can be used to improve the network performance for transfer passengers significantly.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a spatial equilibrium model that not only balances the supply and demand of taxi services but also captures both the taxi drivers' and customers' possible adoption of the newly emerging e-hailing applications in a well-regulated taxi market.
Abstract: Traditionally, customers always hail empty-cruising taxis on streets, which may offer low levels of comfort and efficiency especially during rush hours or rainy days. Thanks to the advance of smartphone technology, the e-hailing applications, which enable customers to hail taxis through their smartphones, become popular globally. To provide a systematic account of the impact of e-hailing applications’ wide adoption on the taxi system, we first propose a spatial equilibrium model that not only balances the supply and demand of taxi services but also captures both the taxi drivers’ and customers’ possible adoption of the newly-emerging e-hailing applications in a well-regulated taxi market. We then prove the existence of the proposed equilibrium, and further provide an algorithm to solve it. An extensive equilibrium model with elastic taxi-customer demands is also proposed. Lastly, a numerical example is presented to compare the taxi services with and without the e-hailing application and evaluate two types of e-hailing applications.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed a scheduling approach to coordinate the arrivals and departures of all trains located in the same electricity supply interval so that the energy regenerated from braking trains can be more effectively utilized to accelerate trains.
Abstract: Regenerative braking is an energy recovery mechanism that converts the kinetic energy during braking into electricity, also known as regenerative energy. In general, most of the regenerative energy is transmitted backward along the pantograph and fed back into the overhead contact line. To reduce the trains’ energy consumption, this paper develops a scheduling approach to coordinate the arrivals and departures of all trains located in the same electricity supply interval so that the energy regenerated from braking trains can be more effectively utilized to accelerate trains. Firstly, we formulate an integer programming model with real-world speed profiles to minimize the trains’ energy consumption with dwell time control. Secondly, we design a genetic algorithm and an allocation algorithm to find a good solution. Finally, we present numerical examples based on the real-life operation data from the Beijing Metro Yizhuang Line in Beijing, China. The results show that the proposed scheduling approach can reduce energy consumption by 6.97% and save about 1,054,388 CNY (or 169,223 USD) each year in comparison with the current timetable. Compared to the cooperative scheduling (CS) approach, the proposed scheduling approach can improve the utilization of regenerative energy by 36.16% and reduce the total energy consumption by 4.28%.

Journal ArticleDOI
TL;DR: A non-parametric method for route travel time distribution estimation using low-frequency floating car data (FCD) that is computationally efficient, scalable, and supports real time applications with large data sets through a proposed distributed implementation.
Abstract: The paper develops a non-parametric method for route travel time distribution estimation using low-frequency floating car data (FCD). While most previous work has focused on link travel time estimation, the method uses FCD observations for estimating the travel time distribution on a route. Potential biases associated with the use of sparse FCD are identified. The method involves a number of steps to reduce the impact of these biases. For evaluation purposes, a case study is used to estimate route travel times from taxi FCD in Stockholm, Sweden. Estimates are compared to observed travel times for routes equipped with Automatic Number Plate Recognition (ANPR) cameras with promising results. As vehicles collecting FCD (in this case, taxis) may not be a representative sample of the overall vehicle fleet and driver population, the ANPR data along several routes are also used to assess and correct for this bias. The method is computationally efficient, scalable, and supports real time applications with large data sets through a proposed distributed implementation.

Journal ArticleDOI
TL;DR: The proposed decentralized traffic signal control policy is an adaptation of a so-called BackPressure scheme, with fixed cycle time and cyclic phases, that stabilizes the network for any feasible traffic demands.
Abstract: We propose in this paper a decentralized traffic signal control policy for urban road networks. Our policy is an adaptation of a so-called BackPressure scheme which has been widely recognized in data network as an optimal throughput control policy. We have formally proved that our proposed BackPressure scheme, with fixed cycle time and cyclic phases, stabilizes the network for any feasible traffic demands. Simulation has been conducted to compare our BackPressure policy against other existing distributed control policies in various traffic and network scenarios. Numerical results suggest that the proposed policy can surpass other policies both in terms of network throughput and congestion.

Journal ArticleDOI
Jie Sun1, Jian Sun1
TL;DR: A dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data and shows that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.
Abstract: Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.

Journal ArticleDOI
TL;DR: This paper introduces a new alternative for population synthesis based on Bayesian networks, and demonstrates and assesses the performance of this approach in generating synthetic population for Singapore, by using the Household Interview Travel Survey data as the known test population.
Abstract: Agent-based micro-simulation models require a complete list of agents with detailed demographic/socioeconomic information for the purpose of behavior modeling and simulation. This paper introduces a new alternative for population synthesis based on Bayesian networks. A Bayesian network is a graphical representation of a joint probability distribution, encoding probabilistic relationships among a set of variables in an efficient way. Similar to the previously developed probabilistic approach, in this paper, we consider the population synthesis problem to be the inference of a joint probability distribution. In this sense, the Bayesian network model becomes an efficient tool that allows us to compactly represent/reproduce the structure of the population system and preserve privacy and confidentiality in the meanwhile. We demonstrate and assess the performance of this approach in generating synthetic population for Singapore, by using the Household Interview Travel Survey (HITS) data as the known test population. Our results show that the introduced Bayesian network approach is powerful in characterizing the underlying joint distribution, and meanwhile the overfitting of data can be avoided as much as possible.