scispace - formally typeset
Search or ask a question

Showing papers in "Tree Physiology in 1996"


Journal ArticleDOI
TL;DR: Respiration was measured on fully expanded foliage, live branches, boles, and fine and coarse roots to determine the relationship between CO(2) efflux, tissue temperature, and biomass or nitrogen (N) content of individual tissues.
Abstract: We measured respiration of 20-year-old Pinus radiata D. Don trees growing in control (C), irrigated (I), and irrigated + fertilized (IL) stands in the Biology of Forest Growth experimental plantation near Canberra, Australia. Respiration was measured on fully expanded foliage, live branches, boles, and fine and coarse roots to determine the relationship between CO(2) efflux, tissue temperature, and biomass or nitrogen (N) content of individual tissues. Efflux of CO(2) from foliage (dark respiration at night) and fine roots was linearly related to biomass and N content, but N was a better predictor of CO(2) efflux than biomass. Respiration (assumed to be maintenance) per unit N at 15 degrees C and a CO(2) concentration of 400 micro mol mol(-1) was 1.71 micro mol s(-1) mol(-1) N for foliage and 11.2 micro mol s(-1) mol(-1) N for fine roots. Efflux of CO(2) from stems, coarse roots and branches was linearly related to sapwood volume (stems) or total volume (branches + coarse roots) and growth, with rates for maintenance respiration at 15 degrees C ranging from 18 to 104 micro mol m(-3) s(-1). Among woody components, branches in the upper canopy and small diameter coarse roots had the highest respiration rates. Stem maintenance respiration per unit sapwood volume did not differ among treatments. Annual C flux was estimated by summing (1) dry matter production and respiration of aboveground components, (2) annual soil CO(2) efflux minus aboveground litterfall, and (3) the annual increment in coarse root biomass. Annual C flux was 24.4, 25.3 and 34.4 Mg ha(-1) year(-1) for the C, I and IL treatments, respectively. Total belowground C allocation, estimated as the sum of (2) and (3) above, was equal to the sum of root respiration and estimated root production in the IL treatment, whereas in the nutrient-limited C and I treatments, total belowground C allocation was greater than the sum of root respiration and estimated root production, suggesting higher fine root turnover or increased allocation to mycorrhizae and root exudation. Carbon use efficiency, the ratio of net primary production to assimilation, was similar among treatments for aboveground tissues (0.43-0.50). Therefore, the proportion of assimilation used for construction and maintenance respiration on an annual basis was also similar among treatments.

545 citations


Journal ArticleDOI
TL;DR: Groundwater discharge from sugar maple trees and forest stands of different sizes (ages) differs significantly, and large trees and older forest stands have a greater impact on the hydrologic balance of groundwater than small trees and younger forest stands.
Abstract: Use of soil water and groundwater by open-grown Acer saccharum Marsh. (sugar maple) tree canopies and forests was estimated by measuring transpiration (E) rates using porometry, sap flow methods, and the Bowen ratio method. The Bowen ratio and sap flow methods showed the best agreement; porometer measurements scaled to whole canopies always underestimated E by 15-50%. Trees of different sizes showed very different rates of E. I hypothesized that these differences were due to the differential access of large and small trees to groundwater and soil water, respectively. Transpirational flux was partitioned between soil water and groundwater by tracing the water sources based on their hydrogen stable isotopic composition (deltaD). Soil water deltaD varied between -41 and -16 per thousand seasonally (May to September), whereas groundwater deltaD was -79 +/- 5 per thousand during the entire growing season. Daily transpiration rates of large (9-14 m tall) trees were significantly higher than those of small (3-5 m tall) trees (2.46-6.99 +/- 1.02-2.50 versus 0.69-1.80 +/- 0.39-0.67 mm day(-1)). Small trees also showed greater variation in E during the growing season than large trees. In addition, compared to the large trees, small trees demonstrated greater sensitivity to environmental factors that influence E, such as soil water deficits and increased evaporative demand. Over the entire growing season, large trees and forest stands composed of trees > 10 m tall transpired only groundwater. The high rates of water loss from large trees and older forests were likely a result of the influence of an enhanced "pool" of transpirational water in the upper soil layers caused by hydraulic lift (see Dawson 1993b). The hydraulically lifted water reservoir enabled large trees to use more potential transpirational water during daylight hours than small trees, leading to a greater total water flux. In contrast, small trees and forest stands composed of younger trees almost exclusively used soil water, except during two dry periods when their transpirational water was composed of between 7 and 17% groundwater. Thus groundwater discharge from sugar maple trees and forest stands of different sizes (ages) differs significantly, and large trees and older forest stands have a greater impact on the hydrologic balance of groundwater than small trees and younger forest stands. However, mixed stands (small and large trees) may have a greater overall impact on the regional hydrologic balance than old stands, because trees in mixed stands draw on both soil water and groundwater reservoirs and thus can substantially increase total water discharge on scales from tens to hundreds of hectares.

399 citations


Journal ArticleDOI
TL;DR: Roots became more ovoid in shape with increasing distance from the tree, especially on deep rooted trees where lateral roots tapered rapidly to a small diameter, and these forms of adaptive growth in response to wind movement improve the rigidity of the soil-root plate and counteract the increasing vulnerability to windthrow as the tree grows.
Abstract: Soil-root plate dimensions and structural root architecture were examined on 46-year-old Sitka spruce (Picea sitchensis (Bong.) Carr.) trees that had been mechanically uprooted. Rooting depth was restricted by a water table, and root system morphology had adapted to resist the wind movement associated with shallow rooting. The spread of the root system and the ratio of root mass to shoot mass (root/shoot ratio) were both negatively related to soil-root plate depth. Root systems had more structural root mass on the leeward side than the windward side of the tree relative to the prevailing wind direction. Cross sections of structural roots were obtained at distances of 0.5, 0.75, 1.0, and 1.25 m from the tree center. Buttressed parts of roots had greater lateral and vertical secondary thickening above rather than below the biological center. This uneven growth, which produced a shape similar in cross section to a T-beam, was greater on the leeward side of the tree, and was greatest at 0.5 m from the tree center of shallow rooted trees. Further from the tree, particularly on the windward side, many roots developed eccentric cross-sectional shapes comparable to I-beams, which would efficiently resist vertical flexing. Roots became more ovoid in shape with increasing distance from the tree, especially on deep rooted trees where lateral roots tapered rapidly to a small diameter. We conclude that these forms of adaptive growth in response to wind movement improve the rigidity of the soil-root plate and counteract the increasing vulnerability to windthrow as the tree grows.

317 citations


Journal ArticleDOI
TL;DR: Examining differences between the biological and physical processes that control the fluxes of mass and energy over these disparate forest stand types found carbon and latent heat flux densities over the temperate broad-leaved forest were about three times larger than those observed over the boreal forest.
Abstract: Fluxes of carbon dioxide, water vapor and energy were measured above and below a temperate broad-leaved forest and a boreal jack pine (Pinus banksiania Lamb.) forest by the eddy covariance method. The aim of the work was to examine differences between the biological and physical processes that control the fluxes of mass and energy over these disparate forest stand types. Carbon and latent heat flux (LE) densities over the temperate broad-leaved forest were about three times larger than those observed over the boreal forest. Available energy was the key variable modulating LE over the temperate broad-leaved forest, whereas LE over the boreal jack pine stand was sensitive to variations in water vapor pressure deficits (VPDs) and available energy. It was also noted that VPDs had different impacts on transpiration rates of the two forest stands. Increasing VPDs forced a negative feedback on jack pine transpiration, whereas transpiration rates of the well-watered broad-leaved forest responded favorably to increasing VPDs. Carbon dioxide flux densities over the broad-leaved forest stand were more sensitive to changes in absorbed photosynthetic photon flux density than those over the boreal forest. The efficiency of CO(2) uptake over the jack pine stand was reduced, in part, because the low leaf area of the stand caused a sizable fraction of available quanta to be absorbed by nonphotosynthetic organs, such as limbs and trunks. Over both forest stands, variations in photosynthetic photon flux density of photosynthetically active radiation (Q(P)) explained only 50 to 60% of the variance of CO(2) exchange rates. Consequently, caution should be exercised when scaling carbon fluxes to regional scales based on unmodified, satellite-derived indices. The more open nature of the boreal jack pine forest caused water vapor, CO(2) and heat fluxes at the forest floor to be a significant component of whole canopy mass and energy exchange rates. About 20 to 30% of net canopy mass and energy exchange occurred at the forest floor. Much smaller rates of mass and energy exchange occurred under the temperate broad-leaved forest.

231 citations


Journal ArticleDOI
TL;DR: Physical and functional properties of foliage were measured at a variety of microsites in a broad-leaved Nothofagus fusca canopy and results suggest that other factors such as wind or herbivory reduce the integrated assimilation of high-N foliage relatively more than lower- N foliage and that a partial differential A/ partial differential N optimality criteria based only on formulations of leaf gas exchange overestimate canopy assimilation.
Abstract: Physical and functional properties of foliage were measured at a variety of microsites in a broad-leaved Nothofagus fusca (Hook. f.) Orst. canopy. The light climate of the foliage at these sites was monitored for 39 days in the late sprlng and early summer with in situ sensors. Foliage nitrogen content (N), mean leaf angle, and gas exchange characteristics were all correlated with the amount of light reaching the microsites during foliage development.

218 citations


Journal ArticleDOI
TL;DR: Biolog is a useful technique for evaluating the functional diversity of microbial communities; however, to interpret the results accurately, they must be assessed in conjunction with the actual carbon substrates available in the particular ecosystem under study.
Abstract: The diversity of microorganisms associated with trees and their different functional capabilities is thought to be a consequence of variation in carbon compounds in the rhizosphere. We used the Biolog(R) system (Biolog Inc., Hayward, CA), a redox-based test, to construct sole carbon source utilization profiles (metabolic fingerprints) of microbial communities from the rhizospheres and rhizoplanes of hybrid larch (Larix eurolepis A. Henry) and Sitka spruce (Picea sitchensis Bong. Carr.) taken from a farm woodland site and two second-rotation plantation forest sites. Canonical variate analysis (CVA) of carbon utilization data differentiated among the microbial communities from the three forest sites, with the greatest discrimination between the farm woodland and the two second-rotation forest sites. Carbohydrates and carboxylic acids were the substrates responsible for this discrimination. Carbon profiles of the microbial communities from the rhizospheres of the two tree species also clustered when evaluated by CVA, as a result of differences in utilization of carboxylic acids and amino acids, suggesting that these tree species differ in the exudates they produce. Isolation and enumeration of organisms confirmed that there were qualitative and quantitative differences in the culturable populations of microorganisms at the different sites and between tree species. We conclude that Biolog is a useful technique for evaluating the functional diversity of microbial communities; however, to interpret the results accurately, they must be assessed in conjunction with the actual carbon substrates available in the particular ecosystem under study.

204 citations


Journal ArticleDOI
TL;DR: The leaf-level physiological measurements were used to derive parameters for a canopy-level isoprene flux model and the importance of incorporating differences between sun- and shade-leaf properties into existing models is discussed.
Abstract: In June 1993, net photosynthetic rates, stomatal conductance and isoprene emission rates of sweetgum leaves (Liquidambar styraciflua L.) were measured at the top of the forest canopy (sun leaves) and within the canopy at a height of 8-10 m above ground level (shade leaves). Large differences in net photosynthetic rates and stomatal conductance were found between sun and shade leaves. Mean rates of isoprene emission, expressed on a leaf area basis, were significantly lower in shade leaves than in sun leaves (4.1 versus 17.1 nmol m(-2) s(-1)); however, because specific leaf area of sun leaves was lower than that of shade leaves (0.0121 versus 0.0334 m(2) g(-1)), the difference between sun and shade leaves was less, though still significant, when isoprene emissions were expressed on a dry mass basis (45.5 versus 29.0 micro g C g(-1) h(-1)). Saturation of both net photosynthesis and isoprene emission occurred at lower PPFDs in shade leaves than in sun leaves. The effect of leaf temperature on isoprene emissions also differed between sun and shade leaves. Sun leaves lost a significantly greater percentage of fixed carbon as isoprene than shade leaves. The leaf-level physiological measurements were used to derive parameters for a canopy-level isoprene flux model. The importance of incorporating differences between sun- and shade-leaf properties into existing models is discussed.

201 citations


Journal ArticleDOI
TL;DR: Comparing the light response curves of the plants showed that the maximum rate of net photosynthesis was affected by the growth temperature, whereas the apparent quantum efficiency remained unchanged, and incomplete acclimation generally resulted in a greater daily carbon uptake than complete acclimations.
Abstract: Steady-state photosynthetic responses to leaf temperature of 4-year-old Eucalyptus globulus Labill. and E. nitens (Deane and Maiden) Maiden trees were measured between 10 and 35 degrees C at approximately monthly intervals from early spring to midwinter. The photosynthetic temperature optimum of recently expanded leaves in the sun canopy was linearly related to the average temperature of the preceding week during the 9-month measurement period. The optimum temperature for net photosynthesis of E. globulus increased from 17 to 23 degrees C as the mean daily temperature increased from 7 to 16 degrees C. Similarly, the optimum temperature for net photosynthesis of E. nitens increased from 14 to 20 degrees C as the mean daily temperature increased from 7 to 19 degrees C. The temperature for maximum photosynthetic response of E. globulus and E. nitens was similar at each measurement time, but the photosynthetic performance of E. nitens was less sensitive to temperatures above and below this optimum than that of E. globulus. In December, the apical shoots of branches of E. globulus had a net photosynthetic temperature optimum of between 10 and 15 degrees C. The corresponding values for expanding leaves, fully expanded leaves from the current year's growth, and fully expanded leaves from the previous year's growth were 15, 20 and 20-25 degrees C, respectively. In a second experiment, E. globulus clones taken from four mother plants originating from climatically dissimilar locations within Tasmania were acclimated at day/night temperatures of 10/15, 18/23 and 25/30 degrees C in temperature-controlled greenhouses. Another set of clones was acclimated in a shadehouse where temperatures ranged between 10 and 25 degrees C and with a mean daily temperature of approximately 15 degrees C. Plants grown at 25/30 degrees C had significantly lower net photosynthetic rates when measured at 10 and 20 degrees C than plants grown at lower temperatures. Plants grown at 10/15 degrees C had significantly lower net photosynthetic rates when measured at 30 degrees C than plants grown at higher temperatures. Plants grown at the ambient conditions prevailing in midautumn in Hobart had significantly higher net photosynthetic rates at 20 degrees C than plants raised in the greenhouses and were equal best performers at 10 and 30 degrees C. A comparison of the light response curves of the plants showed that the maximum rate of net photosynthesis was affected by the growth temperature, whereas the apparent quantum efficiency remained unchanged. There were no significant differences in the photosynthetic temperature responses of the four genotypes derived from climatically dissimilar locations within Tasmania. A comparison of temperature response models for E. globulus indicated that incomplete acclimation (defined by a slope value of less than 1 for the linear relationship between the temperature optimum for photosynthesis and the growth temperature) generally resulted in a greater daily carbon uptake than complete acclimation (slope value of 1).

188 citations


Journal ArticleDOI
TL;DR: Leaves at the top of the white oak tree canopy had higher isoprene emission rates because they were exposed to more sunlight, reduced water availability, and higher temperature than leaves at the bottom of the canopy.
Abstract: The atmospheric hydrocarbon budget is important for predicting ozone episodes and the effects of pollution mitigation strategies. Isoprene emission from plants is an important part of the atmospheric hydrocarbon budget. We measured isoprene emission capacity at the bottom, middle, and top of the canopies of a white oak (Quercus alba L.) tree and a red oak (Quercus rubra L.) tree growing adjacent to a tower in the Duke University Forest. Leaves at the top of the white oak tree canopy had a three- to fivefold greater capacity for emitting isoprene than leaves at the bottom of the tree canopy. Isoprene emission rate increased with increasing temperature up to about 42 degrees C. We conclude that leaves at the top of the white oak tree canopy had higher isoprene emission rates because they were exposed to more sunlight, reduced water availability, and higher temperature than leaves at the bottom of the canopy. Between 35 and 40 degrees C, white oak photosynthesis and stomatal conductance declined, whereas red oak (Quercus rubra) photosynthesis and stomatal conductance increased over this range. Red oak had lower rates of isoprene emission than white oak, perhaps reflecting the higher stomatal conductance that would keep leaves cool. The concentration of isoprene inside the leaf was estimated with a simplified form of the equation used to estimate CO(2) inside leaves.

185 citations


Journal ArticleDOI
TL;DR: In this article, the effects of water stress on fruit fresh and dry weights were investigated in peach trees, Prunus persica (L.) Batsch, with varying crop loads: light, moderate and heavy.
Abstract: Effects of water stress on fruit fresh and dry weights were investigated in peach trees, Prunus persica (L.) Batsch., with varying crop loads: light, moderate and heavy. In well-watered controls, tree water status was independent of crop load. In trees receiving reduced irrigation, the degree of water stress increased with increasing crop load. Water stress induced fruit fresh weight reductions at all crop loads. Fruit dry weight was not reduced by water stress in trees having light to moderate crop loads, indicating that the degree of water stress imposed did not affect the dry weight sink strength of fruit. Water-stressed trees with heavy crop loads had significantly reduced fruit dry weights, which were likely due to carbohydrate source limitations resulting from large crop carbon demands and water stress limitations on photosynthesis.

170 citations


Journal ArticleDOI
TL;DR: Transpiration rates, calculated from measured needle temperatures, stomatal conductance and evaporative demand, were high, indicating that water transport through seedling stems may have acted as a heat transfer mechanism, cooling the stem below the lethal threshold temperature.
Abstract: We studied the effects of high temperature and drought on the survival, growth and water relations of seedlings of Pinus ponderosa (Dougl.) Lawson, one of few coniferous tree species that can successfully colonize drought-prone sites with high soil surface temperatures. Temperature profiles were measured with 0.07-mm thermocouples in a sparse ponderosa pine forest in northern Idaho. The soil surface and the adjacent 5 mm of air reached maximum temperatures exceeding 75 degrees C, well above the lethal temperature threshold for most plants. Air temperatures 50 mm above the soil surface (seedling needle height) rarely exceeded 45 degrees C. Pinus ponderosa seedlings that survived maintained basal stem temperatures as much as 15 degrees C lower than the surrounding air. The apparent threshold temperature at the seedling stem surface resulting in death was approximately 63 degrees C for less than 1 min. No correlation between seedling mortality and needle temperature was found, although some needles reached temperatures as high as 60 degrees C for periods of

Journal ArticleDOI
TL;DR: It is suggested that increased hydraulic resistance and maintenance respiration costs may be the main causes of reduced carbon gain in mature and old trees.
Abstract: Aboveground xylem hydraulic conductance was determined in Scots pine (Pinus sylvestris L.) trees and stands from 7 to about 60 years of age. At the stand scale, leaf area index and net primary productivity (NPP, above- plus belowground) increased and reached a plateau at about 25-30 and 15-20 years, respectively; both parameters declined in mature stands. Stand hydraulic conductance followed a similar trend to NPP, with a maximum at about 15-20 years and a pronounced reduction in old stands. At the tree scale, annual biomass growth per unit of leaf area (growth efficiency) declined with tree age, whereas aboveground sapwood volume per unit leaf area, which is linearly related to maintenance respiration costs, steadily increased. Radiation interception per unit leaf area increased significantly with reduced leaf area index of mature stands, despite increased foliage clumping in the canopies of mature trees. Needle nutrient concentration did not change in the chronosequence. Tree hydraulic conductance per unit leaf area was strongly and positively correlated with growth efficiency. We discuss our findings in the context of growth reductions in mature and old trees, and suggest that increased hydraulic resistance and maintenance respiration costs may be the main causes of reduced carbon gain in mature and old trees.

Journal ArticleDOI
TL;DR: It is concluded that, in northern hardwood forests dominated by sugar maple, root respiration is responsive to changes in both soil temperature and N availability, and that both factors should be considered in models of forest C dynamics.
Abstract: We examined fine-root (< 2.0 mm diameter) respiration throughout one growing season in four northern hardwood stands dominated by sugar maple (Acer saccharum Marsh.), located along soil temperature and nitrogen (N) availability gradients. In each stand, we fertilized three 50 x 50 m plots with 30 kg NO(3) (-)-N ha(-1) year(-1) and an additional three plots received no N and served as controls. We predicted that root respiration rates would increase with increasing soil temperature and N availability. We reasoned that respiration would be greater for trees using NO(3) (-) as an N source than for trees using NH(4) (+) as an N source because of the greater carbon (C) costs associated with NO(3) (-) versus NH(4) (+) uptake and assimilation. Within stands, seasonal patterns of fine-root respiration rates followed temporal changes in soil temperature, ranging from a low of 2.1 micro mol O(2) kg(-1) s(-1) at 6 degrees C to a high of 7.0 micro mol O(2) kg(-1) s(-1) at 18 degrees C. Differences in respiration rates among stands at a given soil temperature were related to variability in total net N mineralized (48-90 micro g N g(-1)) throughout the growing season and associated changes in mean root tissue N concentration (1.18-1.36 mol N kg(-1)). The hypothesized increases in respiration in response to NO(3) (-) fertilization were not observed. The best-fit model describing patterns within and among stands had root respiration rates increasing exponentially with soil temperature and increasing linearly with increasing tissue N concentration: R = 1.347Ne(0.072T) (r(2) = 0.63, P < 0.01), where R is root respiration rate ( micro mol O(2) kg(-1) s(-1)), N is root tissue N concentration (mol N kg(-1)), and T is soil temperature ( degrees C). We conclude that, in northern hardwood forests dominated by sugar maple, root respiration is responsive to changes in both soil temperature and N availability, and that both factors should be considered in models of forest C dynamics.

Journal ArticleDOI
TL;DR: In this paper, the growth and water balance of young plantations of Pinus radiata D. Don and Eucalyptus grandis W. Hill ex Maiden were studied for three years in a climate of high net evaporation.
Abstract: We studied the growth and water balance of young plantations of Pinus radiata D. Don and Eucalyptus grandis W. Hill ex Maiden irrigated with effluent for 3 years in a climate of high net evaporation. The plantations were irrigated weekly with secondary-treated municipal effluent at the estimated water-use rate, or at nominally twice or half this rate. Control plots were irrigated with bore water at their estimated water-use rate. Both species grew rapidly when irrigated with either effluent or bore water. The eucalypts irrigated with effluent at the estimated water-use rate closed canopy in 24 months, and at 34 months, mean dominant height was 12.1 m, stand basal area was 12.2 m(2) ha(-1), volume was 51.2 m(3) ha(-1), LAI was 5.7, and foliage mass was 6.5 Mg ha(-1). The pines in the corresponding effluent treatment had not closed canopy by 34 months. At this time, mean height was 5.0 m, stand basal area was 9.6 m(2) ha(-1), volume was 29.7 m(3) ha(-1), LAI was 3.5, and foliage mass was 7.3 Mg ha(-1). Water use by eucalypts was consistently higher than by pines, commensurate with their more rapid early growth, but the difference was not in proportion to the difference in leaf area. In the third year (when the eucalypts had a closed canopy), the eucalypts used 22% more water than the pines, but the annual mean LAI of the eucalypts was three times greater than that of the pines. The results suggest that (1) plantation water use by the two species on the same site will be similar for the same stage of canopy development, (2) eucalypts are not inherently more profligate consumers of water than pines when soil water is not limiting, and (3) stomatal control limits growth and water use of E. grandis in arid environments.

Journal ArticleDOI
TL;DR: The ability of species to acclimate photosynthetically to elevated CO(2) may, in part, be related to their ability to adapt to low irradiance, and such a relationship has implications for altered C balance and nitrogen use efficiency of understory seedlings.
Abstract: Photosynthetic light response curves (A/PPFD), leaf N concentration and content, and relative leaf absorbance (alpha(r)) were measured in 1-year-old seedlings of shade-intolerant Betula papyrifera Marsh., moderately shade-tolerant Quercus rubra L. and shade-tolerant Acer rubrum L. Seedlings were grown in full sun or 26% of full sun (shade) and in ambient (350 ppm) or elevated (714 ppm) CO(2) for 80 days. In the shade treatments, 80% of the daily PPFD on cloud-free days was provided by two 30-min sun patches at midday. In Q. rubra and A. rubrum, leaf N concentration and alpha(r) were significantly higher in seedlings in the shade treatments than in the sun treatments, and leaf N concentration was lower in seedlings in the ambient CO(2) treatments than in the elevated CO(2) treatments. Changes in alpha(r) and leaf N content suggest that reapportionment of leaf N into light harvesting machinery in response to shade and elevated CO(2) tended to increase with increasing shade tolerance of the plant. Shifts induced by elevated CO(2) in the A/PPFD relationship in sun plants were largest in B. papyrifera and least in A. rubrum: the reverse was true for shade plants. Elevated CO(2) resulted in increased light-saturated A in every species x light treatment combination, except in shaded B. papyrifera. The light compensation point (Gamma) decreased in response to shade in all species, and in response to elevated CO(2) in A. rubrum and Q. rubra. Acer rubrum had the greatest increases in apparent quantum yield (phi) in response to shade and elevated CO(2). To illustrate the effects of shifts in A, Gamma and phi on daily C gain, daily integrated C balance was calculated for individual sun and shade leaves. Ignoring possible stomatal effects, estimated daily (24 h) leaf C balance was 218 to 442% higher in the elevated CO(2) treatments than in the ambient CO(2) treatments in both sun and shade seedlings of Q. rubra and A. rubrum. These results suggest that the ability of species to acclimate photosynthetically to elevated CO(2) may, in part, be related to their ability to adapt to low irradiance. Such a relationship has implications for altered C balance and nitrogen use efficiency of understory seedlings.

Journal ArticleDOI
TL;DR: The low Eh soil treatment resulted in increased root ADH activity and ethylene production in T. distichum, but had no effect on root AD h dehydrogenase activity or ethyleneProduction in the oak species.
Abstract: Seedlings of Taxodium distichum L., Quercus lyrata Walt. and Q. falcata var. pagodaefolia Ell. were grown for 22 days in a rhizotron system providing two soil redox potential regimes, +170 mV (low Eh) and +560 mV (high Eh). Leaf chlorophyll concentration and gas exchange, root alcohol dehydrogenase (ADH) activity, root and leaf ethylene production, and growth and biomass partitioning were measured. In response to the low Eh soil treatment, stomatal conductance was reduced in Q. falcata and Q. lyrata but not in T. distichum, whereas net photosynthesis was reduced significantly in all species; however, net photosynthesis in T. distichum began to recover within 2 weeks of treatment initiation. Within each treatment, mean stomatal conductance and net photosynthesis were significantly greater in T. distichum than in the oak species. Leaf chlorophyll concentration was not affected by the soil treatments. All species showed significant reductions in root and leaf dry weights in response to the low Eh soil condition. The low Eh soil treatment resulted in increased root ADH activity and ethylene production in T. distichum, but had no effect on root ADH activity and ethylene production in the oak species.

Journal ArticleDOI
TL;DR: It is argued that there is a useful role for physically based ecohydrological models in the management of mountain ash forest catchments that cannot be satisfied by simple empirical approaches.
Abstract: We used a physically based ecohydrological model to predict the water balance and growth responses of a mountain ash (Eucalyptus regnans F. Muell.) forest catchment to clear-felling and regeneration. The model, Topog-IRM, was applied to a 0.53 km(2) catchment for a 3-year pretreatment period, and a 20-year period following clear-felling and reseeding of 78% of the catchment area. Simulations were evaluated by comparing observed and predicted streamflows, rainfall interception and soil water values. The model faithfully simulated observed temporal patterns of overstory live stem carbon gain and produced a leaf area trajectory consistent with field observations. Cumulative throughfall was predicted within 1% of observations over an 18-year period. Over a 4-year period, predicted soil water storage in the upper 1.5 m of soil agreed well with field observations. There was fair correspondence between observed and predicted daily streamflows, and the model explained 76% of the variation in monthly flows. Over the 23-year simulation period, the model overpredicted cumulative streamflow by 6%. We argue that there is a useful role for physically based ecohydrological models in the management of mountain ash forest catchments that cannot be satisfied by simple empirical approaches.

Journal ArticleDOI
TL;DR: It is found that modeling the water balance of deep rooting zones is impractical for the purpose of simulating nonpotential transpiration rates because of uncertainties about the depth of the root system, the soil water recharge mechanism and the water retention characteristics of the deep subsoil strata.
Abstract: The use of potential transpiration models to simulate transpiration rates in areas prone to soil water deficits leads to overestimates of water use as the soil dries. Therefore, I carried out studies on Eucalyptus grandis W. Hill ex Maiden trees subjected to soil drying at two field sites in the Mpumalanga province of South Africa to determine the relation between transpiration rate and soil water availability. I hypothesized that, with this relationship defined, simple modeling of the soil water balance could be used to predict what fraction of potential transpiration was taking place at a given time. Site 1 supported a stand of 3-year-old E. grandis trees, whereas 9-year-old trees were growing on Site 2, situated 2 km away. At each site, plastic sheeting was laid over the ground to prevent soil water recharge and thereby allow the roots in the soil to induce a continuous progressive depletion of soil water. Measurements of predawn xylem pressure potential, leaf area index, growth and sap flow rates revealed that prevention of soil water recharge resulted in only moderate drought stress. At Site 1, the trees abstracted water down to 8 m below the surface, whereas trees at Site 2 obtained most of their water from depths below 8 m. I found that modeling the water balance of deep rooting zones is impractical for the purpose of simulating nonpotential transpiration rates because of uncertainties about the depth of the root system, the soil water recharge mechanism and the water retention characteristics of the deep subsoil strata. I conclude that predicting the occurrence and severity of soil water deficits from the soil water balance is not feasible at these sites.

Journal ArticleDOI
TL;DR: Stem respiration was measured throughout 1993 on 56 mature trees of three species (Quercus alba, Quercus prinus L., and Acer rubrum L.) in Walker Branch Watershed, Oak Ridge, Tennessee to predict seasonal changes in maintenance respiration (R(m).
Abstract: Stem respiration was measured throughout 1993 on 56 mature trees of three species (Quercus alba L., Quercus prinus L., and Acer rubrum L.) in Walker Branch Watershed, Oak Ridge, Tennessee. A subset of the trees was remeasured during 1994. Diameter increments, stem temperatures and soil water were also monitored. Respiration rates in the spring and summer of 1993 tracked growth rate increments, except during a drought when growth dropped to zero and respiration increased to its highest rate. During the dormant season, rates of total stem respiration (R(t)) tended to be greater in large trees with thick sapwood but no such trend was observed during the growing season. Before and after the growing season, respiration rates correlated well with stem temperatures. Estimated values of Q(10) were 2.4 for the two oak species and 1.7 for red maple. The Q(10) values were used along with baseline respiration measurements and stem temperatures to predict seasonal changes in maintenance respiration (R(m)). In red maple, annual total R(m) accounted for 56 and 60% of R(t) in 1993 and 1994, respectively. In chestnut oak, R(m) accounted for 65 and 58% of R(t) in 1993 and 1994, respectively. In white oak, R(m) accounted for 47 and 53% of R(t) in 1993 and 1994, respectively. Extrapolating these data to the stand level showed that woody tissue respiration accounted for 149 and 204 g C m(-2) soil surface year(-1) in 1993 and 1994, respectively.

Journal ArticleDOI
TL;DR: The close correlation of needle thickness and leaf mass/area with openness suggests that either parameter could be used as an index of the distribution of light or light-driven processes in an A. amabilis canopy.
Abstract: In some conifers, shoot geometry and needle morphology vary significantly in response to the light conditions under which they develop. We measured shoot length, silhouette area, total projected needle area, total needle weight and needle thickness on current shoots developed under a wide range of light conditions in a 36-year-old Abies amabilis (Dougl.) Forbes stand. Current light was quantified by evaluating percent openness from hemispherical photographs taken before the growing season. Unweighted total openness was correlated with shoot geometry and needle morphology better than any weighted indices tested. Needle thickness and leaf mass/area were both closely correlated with total openness (R(2) = 0.86 and 0.82, respectively). The most exposed needles were 2.5 times thicker and had 3-4 times more leaf mass/area than the most shaded needles. Total projected leaf area/shoot silhouette area was also correlated with openness (R(2) = 0.74) and was about twice as high in sun shoots as in shaded shoots. As a result of greater leaf mass/leaf area and greater leaf area/shoot silhouette area, a unit of intercepted light was dispersed over about 6 times as much leaf mass in a sun shoot as in a shade shoot, which presumably permits more efficient utilization of the intercepted light under high illumination with less energy wastage to light saturation. Moreover, leaf mass per unit of silhouette area was almost exactly proportional to canopy openness, as predicted by resource optimization theory if nitrogen concentration and photosynthetic capacity per unit mass are constant in new leaves. The close correlation of needle thickness and leaf mass/area with openness suggests that either parameter could be used as an index of the distribution of light or light-driven processes in an A. amabilis canopy.

Journal ArticleDOI
TL;DR: It is concluded that enzymes of the antioxidant system, superoxide dismutase and ascorbate peroxidase, were high enough to cope with the increase in oxygen reactive species likely to arise under the stressful conditions of midday, and these enzymes may provide an additional mechanism for energy dissipation.
Abstract: Daily variations in photoprotective mechanisms were studied in sun and shade leaves of 40-year-old cork oak (Quercus suber L.) trees during early summer in Portugal. Although trees were not severely water stressed because predawn leaf water potentials remained high, photosynthesis and stomatal conductance decreased at midday. The midday depression in gas exchange was not reversed by short-term exposure to "optimal" conditions of temperature, light and vapor pressure deficit. Chlorophyll a fluorescence, maximum photochemical yield of photosystem II and the quantum yield of noncyclic electron transport showed midday depressions, but recovered by the evening. Both short-term changes in the components of the xanthophyll cycle (reversible de-epoxidation of violaxanthin during the day) as well as long-term changes (higher xanthophyll content in sun compared with shade leaves) were detected and may play a role in the dissipation of excess energy at midday. Because the activities of enzymes of the antioxidant system, superoxide dismutase and ascorbate peroxidase, were high enough to cope with the increase in oxygen reactive species likely to arise under the stressful conditions of midday, we conclude that these enzymes may provide an additional mechanism for energy dissipation.

Journal ArticleDOI
TL;DR: Leaf enclosure measurements of isoprene emission rates from Quercus were substantially higher than the rates used in existing emission models and measurements with a fast response analyzer demonstrated that 60 min is a reasonable time resolution for biogenic emission models.
Abstract: Natural volatile organic compound (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were used to estimate above canopy fluxes for entire stands and landscapes. The branch enclosure experiments revealed 78 VOCs. Hexenol derivatives were the most commonly observed oxygenated compounds. The branch measurements also revealed high rates of isoprene emission from three genera of plants (Albizia, Chusqua and Mahonia) and high rates of monoterpene emission from three genera (Atriplex, Chrysthamnus and Sorbus) for which VOC emission rates have not been reported. Measurements on an additional 34 species confirmed previous results. Leaf enclosure measurements of isoprene emission rates from Quercus were substantially higher than the rates used in existing emission models. Model predictions of diurnal variations in isoprene fluxes were generally within +/- 35% of observed flux variations. Measurements with a fast response analyzer demonstrated that 60 min is a reasonable time resolution for biogenic emission models. Average daytime stand scale (hundreds of m) flux measurements ranged from about 1.3 mg C m(-2) h(-1) for a shrub oak stand to 1.5-2.5 mg C m(-2) h(-1) for a mixed forest stand. Morning, evening and nighttime fluxes were less than 0.1 mg C m(-2) h(-1). Average daytime landscape scale (tens of km) flux measurements ranged from about 3 mg C m(-2) h(-1) for a shrub oak-aspen and rangeland landscape to about 7 mg C m(-2) h(-1) for a deciduous forest landscape. Fluxes predicted by recent versions (BEIS2, BEIS2.1) of a biogenic emission model were within 10 to 50% of observed fluxes and about 300% higher than those predicted by a previous version of the model (BEIS).

Journal ArticleDOI
TL;DR: It is concluded that differences in shade tolerance among these species are not the result of changes in the photosynthetic mechanism in response to shade.
Abstract: To determine the effects of shade on biomass, carbon allocation patterns and photosynthetic response, seedlings of loblolly pine (Pinus taeda L.), white pine (Pinus strobus L.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) were grown without shade or in shade treatments providing a 79 or 89% reduction of full sunlight for two growing seasons. The shade treatments resulted in less total biomass for all species, with loblolly pine showing the greatest shade-induced growth reduction. Yellow-poplar was the only species to show increased stem height growth in the 89% shade treatment. The shade treatments increased specific leaf area of all species. Quantum efficiency, dark respiration and light compensation point were generally not affected by the shade treatments. Quantum efficiency, dark respiration, maximum photosynthesis and light compensation point did not change consistently between the first and second growing seasons. We conclude that differences in shade tolerance among these species are not the result of changes in the photosynthetic mechanism in response to shade.

Journal ArticleDOI
TL;DR: In this article, the authors studied carbon and nitrogen allocation in mycorrhizal and non-mycobionts grown in a semi-hydroponic system with nitrogen as the growth limiting factor.
Abstract: We studied carbon and nitrogen allocation in mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris L.) seedlings grown in a semi-hydroponic system with nitrogen as the growth limiting factor. Three ectomycorrhizal fungi were compared: one pioneer species (Thelephora terrestris Ehrh.: Fr.) and two late-stage fungi (Suillus bovinus (L.: Fr.) O. Kuntze, and Scleroderma citrinum Pers.). By giving all plants in each treatment the same amount of readily available nitrogen, we ensured that the external mycelium could not increase the total nitrogen content of the plants, thereby guaranteeing that any change in carbon or nitrogen partitioning was a direct effect of the mycorrhizal infection itself. Carbon and nitrogen partitioning were measured at an early and a late stage of mycorrhizal development, and at a low and a high N addition rate. Although mycorrhizal seedlings had a higher net assimilation rate and a higher shoot/root ratio than non-mycorrhizal seedlings, they had a lower rate of shoot growth. The high carbon demand of the mycobionts was consistent with the large biomass of external mycelia and the increased belowground respiration of the mycorrhizal plants. The carbon cost to the host was similar for pioneer and late-stage fungi. Above- and belowground partitioning of nitrogen was also affected by mycorrhizal infection. The external mycelia of Scleroderma citrinum retained 32% of the nitrogen supplied to the plants, thus significantly reducing nitrogen assimilation by the host plants and consequently reducing their growth rate. By contrast, the external mycelia of T. terrestris and Suillus bovinus retained less nitrogen than the mycelia of Scleroderma citrinum, hence we attributed the decreased growth rates of their host plants to a carbon drain rather than a nitrogen deficiency.

Journal ArticleDOI
TL;DR: It is concluded that the drought-tolerance responses of E. globulus make it a more suitable species than E. nitens for establishment on sites where moderate water stress is experienced.
Abstract: In August 1990, a 2-ha plantation was established in an area where rainfall (about 515 mm year −1 ) was insufficient to meet evaporative demand. On nine occasions between September 1991 and April 1993, pressure-volume curves were constructed for irrigated and rainfed Eucalyptus globulus ssp. globulus Labill. and E. nitens (Deane and Maiden) Maiden trees. During the experiment, rainfed trees experienced six periods when predawn water potential was significantly lower than that of irrigated trees. In early spring of 1991 and 1992, osmotic potentials at full turgor and turgor loss point in the irrigated E. nitens were significantly lower than at other times of the year, probably because of winter hardening. Water stress reduced osmotic potential and increased bulk elastic modulus in E. nitens, whereas the reverse occurred in E. globulus. However, treatment differences with respect to changes in osmotic and elastic properties were commonly overshadowed by interspecific differences. These were most apparent at the end of the sixth period of water stress when osmotic potentials at full and zero turgor were significantly higher and bulk elastic modulus and relative water content at turgor loss point were significantly lower in E. globulus than in E. nitens. We conclude that the drought-tolerance responses of E. globulus make it a more suitable species than E. nitens for establishment on sites where moderate water stress is experienced.

Journal ArticleDOI
TL;DR: The percent increase in A(max) due to CO(2) enrichment was similar in all irrigation and fertilization treatments and the effect persisted throughout the 11-month study period for both one-year-old and current-year foliage.
Abstract: Branches of nine-year-old loblolly pine trees grown in a 2 x 2 factorial combination of fertilization and irrigation were exposed for 11 months to ambient, ambient + 175, or ambient + 350 micro mol mol(-1) CO(2). Rates of light-saturated net photosynthesis (A(max)), maximum stomatal conductance to water vapor (g(max)), and foliar nitrogen concentration (% dry mass) were assessed monthly from April 1993 until September 1993 on 1992 foliage (one-year-old) and from July 1993 to March 1994 on 1993 foliage (current-year). Rates of A(max) of foliage in the ambient + 175 CO(2) treatment and ambient + 350 were 32-47 and 83-91% greater, respectively, than that of foliage in the ambient CO(2) treatment. There was a statistically significant interaction between CO(2) treatment and fertilization or irrigation treatment on A(max) on only one measurement date for each age class of foliage. Light-saturated stomatal conductance to water vapor (g(max)) was significantly affected by CO(2) treatment on only four measurement dates. Light-saturated g(max) in winter was only 42% of summer g(max) even though soil water during winter was near field capacity and evaporative demand was low. Fertilization increased foliar N concentration by 30% over the study period when averaged across CO(2) treatments. During the study period, the ambient + 350 CO(2) treatment decreased average foliar N concentration of one-year-old foliage in the control, irrigated, fertilized and irrigated + fertilized plots by 5, 6.4, 9.6 and 11%, respectively, compared with one-year-old foliage in the corresponding ambient CO(2) treatments. The percent increase in A(max) due to CO(2) enrichment was similar in all irrigation and fertilization treatments and the effect persisted throughout the 11-month study period for both one-year-old and current-year foliage.

Journal ArticleDOI
TL;DR: Extended needle retention in Scots pine and Norway spruce populations in low-temperature habitats at high elevations and high latitudes appears to be largely an environmentally regulated phenotypic acclimation.
Abstract: There is abundant evidence that evergreen conifers living at high elevations or at high latitudes have longer-lived needles than trees of the same species living elsewhere. This pattern is likely caused by the influence of low temperature in combination with related factors such as a short growing season and low nutrient availability. Because it is not known to what degree such patterns result from phenotypic versus genotypic variation, we evaluated needle longevity for common-garden-grown lowland populations of European Scots pine (Pinus sylvestris L.) of wide latitudinal origin and Norway spruce (Picea abies L.) of wide elevational origin. Nine-year-old trees of 16 Scots pine populations ranging in origin from 47 degrees to 60 degrees N were studied in Kornik, Poland (52 degrees N) and 18-year-old trees of 18 Norway spruce populations ranging in origin from 670 to 1235 m elevation in southwestern Poland were studied near Morawina, Poland (51 degrees N, 180 m elevation). There was no tendency in either species for populations from northern or high elevation origins to retain needles longer than other populations. All of the Scots pine populations had between 2.5 to 3.0 needle age cohorts and all of the Norway spruce populations had between 6.4 and 7.2 needle age cohorts. Thus, extended needle retention in Scots pine and Norway spruce populations in low-temperature habitats at high elevations and high latitudes appears to be largely an environmentally regulated phenotypic acclimation.

Journal ArticleDOI
TL;DR: This paper reviews studies designed to improve the ability to predict and ameliorate the impacts of increased flooding and salinity stress on baldcypress (Taxodium distichum (L.) Rich.
Abstract: Coastal wetlands of the southeastern United States are threatened by increases in flooding and salinity as a result of both natural processes and man-induced hydrologic alterations Furthermore, global climate change scenarios suggest that, as a consequence of rising sea levels, much larger areas of coastal wetlands may be affected by flooding and salinity in the next 50 to 100 years In this paper, we review studies designed to improve our ability to predict and ameliorate the impacts of increased flooding and salinity stress on baldcypress (Taxodium distichum (L) Rich), which is a dominant species of many coastal forested wetlands Specifically, we review studies on species-level responses to flooding and salinity stress, alone and in combination, we summarize two studies on intraspecific variation in response to flooding and salinity stress, we analyze the physiological mechanisms thought to be responsible for the interaction between flooding and salinity stress, and we discuss the implications for coastal wetland loss and the prospects for developing salt-tolerant lines of baldcypress

Journal ArticleDOI
TL;DR: A mechanistic, biogeochemical succession model was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA and results show increases in net primary productivity and available nitrogen when fires are included in the simulation.
Abstract: A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data. Language: en

Journal ArticleDOI
TL;DR: It is concluded that the relative performance of mangrove seedlings growing in anaerobic soils is influenced by interspecific differences in root aeration and concomitant effects on root morphology and physiology.
Abstract: Seedlings of Rhizophora mangle L., Avicennia germinans (L.) Stearn., and Laguncularia racemosa (L.) Gaertn. f. were cultured in aerated or N(2)-purged solution for 12 weeks to assess their relative responses to low oxygen tensions. All three species responded to low oxygen treatment by modifying physiological and morphological patterns to decrease carbon loss by root respiration. However, the extent to which seedling physiology and morphology were altered by low oxygen treatment differed among species. Maintenance of root oxygen concentrations, root respiration rates and root extension rates by R. mangle demonstrated an ability to avoid low oxygen stress with minimal changes in root morphology and physiology. In contrast, oxygen concentrations in A. germinans and L. racemosa roots declined from 16 to 5% or lower within 6 h of treatment. Root hypoxia led to significant decreases in respiration rates of intact root systems (31 and 53% below controls) and root extension rates (38 and 76% below controls) by A. germinans and L. racemosa, respectively, indicating a greater vulnerability of these species to low oxygen tensions in the root zone compared with R. mangle. I conclude that the relative performance of mangrove seedlings growing in anaerobic soils is influenced by interspecific differences in root aeration and concomitant effects on root morphology and physiology.