scispace - formally typeset
Search or ask a question

Showing papers in "Tree Physiology in 2010"


Journal ArticleDOI
TL;DR: It was found that elevated temperatures enhanced growth in deciduous species more than in evergreen trees, and Tropical species were indeed more susceptible to warming-induced growth declines than temperate or boreal trees in both analyses.
Abstract: Summary The response of tree growth to a change in temperature may differ in predictable ways. Trees with conservative growth strategies may have little ability to respond to a changing climate. In addition, high latitude and altitude tree growth may be temperature-limited and thus benefi tf rom some degree of warming, as opposed to warm-adapted species. Using data from 63 studies, we examined whether trees from different functional groups and thermal niches differed in their growth response to a change in growth temperature. We also investigated whether responses predicted for a change in growth temperature (both reduced and elevated) were similar for increased temperatures by repeating the analysis on the subset of raised temperature data to confirm the validity of our results for use in a climate-warming scenario. Using both the temperature-change response and the warming response, we found that elevated temperatures enhanced growth (measured as shoot height, stem diameter and biomass) in deciduous species more than in evergreen trees. Tropical species were indeed more susceptible to warminginduced growth declines than temperate or boreal trees in both analyses. More carbon may be available to allocate to growth at high temperatures because respiration acclimated more strongly than photosynthesis, increasing carbon assimilation but moderating carbon losses. Trees that developed at elevated temperatures did not simply accelerate growth but followed different developmental trajectories than unwarmed trees, allocating more biomass to leaves and less to roots and growing taller for a given stem diameter. While there were insufficient data to analyze trends for particular species, we generated equations to describe general trends in tree growth to temperature changes and to warming for use at large spatial scales or where data are lacking. We discuss the implications of these results in the context of a changing climate and highlight the areas of greatest uncertainty regarding temperature and tree growth where future research is needed.

716 citations


Journal ArticleDOI
TL;DR: Although mangroves have been proposed to protect the marine environment from land-derived nutrient pollution, nutrient enrichment can have negative consequences for mangrove forests and their capacity for retention of nutrients may be limited.
Abstract: Mangrove forests dominate the world's tropical and subtropical coastlines. Similar to other plant communities, nutrient availability is one of the major factors influencing mangrove forest structure and productivity. Many mangrove soils have extremely low nutrient availability, although nutrient availability can vary greatly among and within mangrove forests. Nutrient-conserving processes in mangroves are well developed and include evergreeness, resorption of nutrients prior to leaf fall, the immobilization of nutrients in leaf litter during decomposition, high root/shoot ratios and the repeated use of old root channels. Both nitrogen-use efficiency and nutrient resorption efficiencies in mangroves are amongst the highest recorded for angiosperms. A complex range of interacting abiotic and biotic factors controls the availability of nutrients to mangrove trees, and mangroves are characteristically plastic in their ability to opportunistically utilize nutrients when these become available. Nitrogen and phosphorus have been implicated as the nutrients most likely to limit growth in mangroves. Ammonium is the primary form of nitrogen in mangrove soils, in part as a result of anoxic soil conditions, and tree growth is supported mainly by ammonium uptake. Nutrient enrichment is a major threat to marine ecosystems. Although mangroves have been proposed to protect the marine environment from land-derived nutrient pollution, nutrient enrichment can have negative consequences for mangrove forests and their capacity for retention of nutrients may be limited.

434 citations


Journal ArticleDOI
TL;DR: The role of carbon (C) and nitrogen (N) storage by trees will be discussed in terms of uncoupling their growth from resource acquisition, allowing trees to uncouple seasonal growth from N uptake by roots and allowing recovery from disturbances such as browsing damage.
Abstract: Summary The role of carbon (C) and nitrogen (N) storage by trees will be discussed in terms of uncoupling their growth from resource acquisition. There are profound differences between the physiology of C and N storage. C storage acts as a short-term, temporary buffer when photosynthesis cannot meet current sink demand and remobilization is sink driven. However, the majority of C allocated to non-structural carbohydrates such as starch is not reused so is in fact sequestered, not stored. In contrast, N storage is seasonally programmed, closely linked to tree phenology and operates at temporal scales of months to years, with remobilization being source driven. We examine the ecological significance of N storage and remobilization in terms of regulating plant N use efficiency, allowing trees to uncouple seasonal growth from N uptake by roots and allowing recovery from disturbances such as browsing damage. We also briefly consider the importance of N storage and remobilization in regulating how trees will likely respond to rising atmospheric carbon dioxide concentrations. Most studies of N storage and remobilization have been restricted to small trees growing in a controlled environment where 15 N can be used easily as a tracer for mineral N. We highlight the need to describe and quantify these processes for adult trees in situ where most root N uptake occurs via ectomycorrhizal partners, an approach that now appears feasible for deciduous trees through quantification of the flux of remobilized N in their xylem. This opens new possibilities for studying interactions between N and C allocation in trees and associated mycorrhizal partners, which are likely to be crucial in regulating the response of trees to many aspects of global environmental change.

411 citations


Journal ArticleDOI
TL;DR: A better understanding of processes responsible for changes to tree productivity in mixed-species tree plantations can improve species, and within-species, selection so that the long-term outcome of mixtures is more predictable.
Abstract: Productivity of tree plantations is a function of the supply, capture and efficiency of use of resources, as outlined in the Production Ecology Equation. Species interactions in mixed-species stands can influence each of these variables. The importance of resource-use efficiency in determining forest productivity has been clearly demonstrated in monocultures; however, substantial knowledge gaps remain for mixtures. This review examines how the physiology and morphology of a given species can vary depending on whether it grows in a mixture or monoculture. We outline how physiological and morphological shifts within species, resulting from interactions in mixtures, may influence the three variables of the Production Ecology Equation, with an emphasis on nutrient resources [nitrogen (N) and phosphorus (P)]. These include (i) resource availability, including soil nutrient mineralization, N₂ fixation and litter decomposition; (ii) proportion of resources captured, resulting from shifts in spatial, temporal and chemical patterns of root dynamics; (iii) resource-use efficiency. We found that more than 50% of mixed-species studies report a shift to greater above-ground nutrient content of species grown in mixtures compared to monocultures, indicating an increase in the proportion of resources captured from a site. Secondly, a meta-analysis showed that foliar N concentrations significantly increased for a given species in a mixture containing N₂-fixing species, compared to a monoculture, suggesting higher rates of photosynthesis and greater resource-use efficiency. Significant shifts in N- and P-use efficiencies of a given species, when grown in a mixture compared to a monoculture, occurred in over 65% of studies where resource-use efficiency could be calculated. Such shifts can result from changes in canopy photosynthetic capacities, changes in carbon allocation or changes to foliar nutrient residence times of species in a mixture. We recommend that future research focus on individual species' changes, particularly with respect to resource-use efficiency (including nutrients, water and light), when trees are grown in mixtures compared to monocultures. A better understanding of processes responsible for changes to tree productivity in mixed-species tree plantations can improve species, and within-species, selection so that the long-term outcome of mixtures is more predictable.

311 citations


Journal ArticleDOI
TL;DR: The 2007 European larch (Larix decidua Mill.) growing season was monitored along two elevational transects in the Lötschental valley in the Swiss Alps to provide new data on the timing and duration of basic growth processes and contributes to quantification of the impacts of global warming on tree growth and productivity.
Abstract: The 2007 European larch (Larix decidua Mill.) growing season was monitored along two elevational transects in the Lotschental valley in the Swiss Alps. Phenological observations and weekly microcore sampling of 28 larch trees were conducted between April and October 2007 at seven study sites regularly spaced from 1350 to 2150 m a.s.l. on northwest- and southeast-facing slopes. The developmental stages of nearly 75,000 individual cells assessed on 1200 thin sections were used to investigate the links between the trees' thermal regimes and growth phases including the beginning and ending of cell enlargement, wall thickening and maturation of the stem wood. Needles appeared approximately 3-4 weeks earlier than stem growth. The duration of ring formation lasted from mid-May to the end of October, with the length of the growing season decreasing along elevation from 137 to 101 days. The onset of the different growing seasons changed by 3-4 days per 100 m elevation; the ending of the growing season, however, appeared minimally related to altitude. If associated with the monitored altitudinal lapse rate of -0.5 degrees C per 100 m, these results translate into a lengthening of the growing season by approximately 7 days per degree Celsius. This study provides new data on the timing and duration of basic growth processes and contributes to quantification of the impacts of global warming on tree growth and productivity.

243 citations


Journal ArticleDOI
TL;DR: Phosphatase release from mycorrhizas is likely to play a significant role in the acquisition of Pi from labile organic forms of P (Po), and a greater understanding of the forms of Po available to the phosphatases is warranted.
Abstract: Globally, phosphorus (P) limits productivity of trees in many forests and plantations especially in highly weathered, acidic or calcareous profiles. Most trees form mycorrhizal associations which are prevalent in the organic and mineral soil horizons. This review critically examines mechanisms that enhance the acquisition of P by tree roots. Mycorrhizal roots have a greater capacity to take up phosphate (Pi) from the soil solution than non-mycorrhizal root tips. Factors that contribute to this include the extent of extraradical hyphal penetration of soil and the physiology and biochemistry of the fungal/soil and fungal/plant interfaces. Ectomycorrhizal (ECM) trees are likely to benefit from association with basidiomycetes that possess several high-affinity Pi transporters that are expressed in extraradical hyphae and whose expression is enhanced by P deficiency. To understand fully the role of these putative transporters in the symbiosis, data regarding their localization, Pi transport capacities and regulation are required. Some ECM fungi are able to effect release of Pi from insoluble mineral P through excretion of low-molecular-weight organic anions such as oxalate, but the relative contribution of insoluble P dissolution in situ remains to be quantified. How the production of oxalate is regulated by nitrogen remains a key question to be answered. Lastly, phosphatase release from mycorrhizas is likely to play a significant role in the acquisition of Pi from labile organic forms of P (Po). As labile forms of Po can constitute the major fraction of the total P in some tropical and temperate soils, a greater understanding of the forms of Po available to the phosphatases is warranted.

239 citations


Journal ArticleDOI
TL;DR: The focus is on tree mineral nutrient uptake and metabolism as well as on the interaction between carbon allocation and the mineral nutrient balance as affected by reduced and excess water availability, as expected to be more common in the future.
Abstract: The effects of global climate change will regionally be very different, mainly causing considerable changes in temperature and water availability For Central Europe, for example, increased temperatures are predicted, which will cause increased frequencies and durations of summer drought events On the other hand, the predicted changes in precipitation patterns will lead to enhanced rainfall during winter and spring, thereby increasing the risk of flooding in Central and Northern Europe Depending on the sensitivity to reduced water availability on the one hand and oxygen depletion due to waterlogging on the other, physiological performance, growth and competitive ability of trees may be adversely affected Both drought and excess water availability impair the mineral nutrition of trees by influencing on the one hand the nutrient availability in the soil and on the other hand the physiology of the uptake systems mainly of the mycorrhizal tree roots Extreme water regimes also change interaction patterns among plants and between plants and microorganisms, and alter the carbon balance of trees and ecosystems Here we summarize and discuss the present knowledge on tree nutrition under altered water availability as expected to be more common in the future The focus is on tree mineral nutrient uptake and metabolism as well as on the interaction between carbon allocation and the mineral nutrient balance as affected by reduced and excess water availability

235 citations


Journal ArticleDOI
TL;DR: Data suggest that Spm pretreatment causes accumulation of higher endogenous polyamines and accordingly leads to more effective ROS scavenging and stimulated stomatal closure upon dehydration, which may function collectively to enhance dehydration tolerance.
Abstract: Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving dehydration tolerance of citrus in vitro plants by exogenous application of spermine (Spm). 'Red Tangerine' (Citrus reticulata Blanco) in vitro plants pretreated with 1 mM Spm exhibited less wilted phenotype and lower water loss and electrolyte leakage than the control under dehydration. Spm-pretreated plants contained higher endogenous polyamine content during the course of the experiment relative to the control, particularly at the end of dehydration, coupled with higher expression levels of ADC and SPMS. Histochemical staining showed that the Spm-pretreated leaves were stained to a lower extent than those without Spm pretreatment, implying generation of less reactive oxygen species (ROS). On the contrary, activities of peroxidase (POD) and superoxide dismutase (SOD) in the Spm-pretreated samples were higher than the control at a given time point or during the whole experiment, suggesting that Spm exerted a positive effect on antioxidant systems. In addition, significantly smaller stomatal aperture size was observed in Spm-pretreated epidermal peels, which showed that stomatal closure was promoted by polyamines. All of these data suggest that Spm pretreatment causes accumulation of higher endogenous polyamines and accordingly leads to more effective ROS scavenging (less tissue damage) and stimulated stomatal closure (lower water loss) upon dehydration, which may function collectively to enhance dehydration tolerance.

220 citations


Journal ArticleDOI
TL;DR: The hypothesis that growth decrease related to age is accompanied by changes in carbon allocation to the benefit of storage and reproductive functions in two contrasting broad-leaved species, beech and sessile oak, is tested.
Abstract: Summary Two types of physiological mechanisms can contribute to growth decline with age: (i) the mechanisms leading to the reduction of carbon assimilation (input )a nd (ii) those leading to modification of the resource economy. Surprisingly, the processes relating to carbon allocation have been little investigated as compared to research on the processes governing carbonassimilation.Theobjectiveofthispaperwasthustotest the hypothesis that growth decrease related to age is accompanied by changes in carbon allocation to the benefit of storage and reproductive functions in two contrasting broad-leaved species: beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Age-related changes in carbon allocation were studied using a chronosequence approach. Chronosequences, each consisting of several even-aged stands ranging from 14 to 175 years old for beech and from 30 to 134 years old for sessile oak, were divided into five or six age classes. In this study, carbon allocations to growth, storage and reproduction were defined as the relative amount of carbon invested in biomass increment, carbohydrate increment and seed production, respectively. Tree-ring width and allometric relationships were used to assess biomass increment at the tree and stand scales. Below-ground biomass was assessed using a specific allometric relationship between root: shoot ratio and age, established from the literature review. Seasonal variations of carbohydrate concentrations were used to assess carbon allocation to storage. Reproduction effort was quantified for beech stands by collecting seed and cupule production. Age-related flagging of biomass productivity was assessed at the tree and stand scales, and carbohydrate quantities in trees increased with age for both species. Seed and cupule production increased with stand age in beech from 56 gC m �2 year �1 at 30years oldto129gCm �2 year �1 at 138years old.In beech, carbon allocation to storage and reproductive functions increased with age to the detriment of carbon allocation to growth functions. In contrast, the carbon balance between growth and storage remained constant between age classes in sessile oak. The contrasting age-related changes in carbon allocation between beech and sessile oak are discussed with reference to the differences in growing environment, phenology and hydraulic properties of ring-porous and diffuse-porous species.

170 citations


Journal ArticleDOI
TL;DR: The study supports the adaptive value of SLA and LS for cork oak under a Mediterranean climate and their potentially important role for dealing with varying temperature and rainfall regimes through both local adaptation and phenotypic plasticity.
Abstract: Plants distributed across a wide range of environmental conditions are submitted to differential selective pressures. Long-term selection can lead to the development of adaptations to the local environment, generating ecotypic differentiation. Additionally, plant species can cope with this environmental variability by phenotypic plasticity. In this study, we examine the importance of both processes in coping with environmental heterogeneity in the Mediterranean sclerophyllous cork oak Quercus suber. For this purpose, we measured growth and key functional traits at the leaf level in 9-year-old plants across 2 years of contrasting precipitation (2005 and 2006) in a common garden. Plants were grown from acorns originated from 13 populations spanning a wide range of climates along the distribution range of the species. The traits measured were: leaf size (LS), specific leaf area (SLA), carbon isotope discrimination (Delta(13)C) and leaf nitrogen content per unit mass (N(mass)). Inter-population differences in LS, SLA and Delta(13)C were found. These differences were associated with rainfall and temperature at the sites of origin, suggesting local adaptation in response to diverging climates. Additionally, SLA and LS exhibited positive responses to the increase in annual rainfall. Year effect explained 28% of the total phenotypic variance in LS and 2.7% in SLA. There was a significant genotype x environment interaction for shoot growth and a phenotypic correlation between the difference in shoot growth among years and the annual mean temperature at origin. This suggests that populations originating from warm sites can benefit more from wet conditions than populations from cool sites. Finally, we investigated the relationships between functional traits and aboveground growth by several regression models. Our results showed that plants with lower SLA presented larger aboveground growth in a dry year and plants with larger leaf sizes displayed larger growth rates in both years. Overall, the study supports the adaptive value of SLA and LS for cork oak under a Mediterranean climate and their potentially important role for dealing with varying temperature and rainfall regimes through both local adaptation and phenotypic plasticity.

166 citations


Journal ArticleDOI
TL;DR: Although spatial variability in the dynamics and duration of cell differentiation processes in P. sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.
Abstract: We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during two contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic sites). In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 degrees C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 weeks was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 weeks earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 weeks later at the dry-mesic site. Since in both study years more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 weeks earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05). Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in P. sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.

Journal ArticleDOI
TL;DR: In this paper, the effects of solar UV-A and UV-B radiation on the expression of flavonoid pathway genes and phenolic accumulation in leaves of Betula pendula Roth (silver birch) seedlings grown outdoors were investigated.
Abstract: Ultraviolet (UV) radiation is an important environmental factor for plant communities; however, plant responses to solar UV are not fully understood. Here, we report differential effects of solar UV-A and UV-B radiation on the expression of flavonoid pathway genes and phenolic accumulation in leaves of Betula pendula Roth (silver birch) seedlings grown outdoors. Plants were exposed for 30 days to six UV treatments created using three types of plastic film. Epidermal flavonoids measured in vivo decreased when UV-B was excluded. In addition, the concentrations of six flavonoids determined by high-performance liquid chromatography-mass spectrometry declined linearly with UV-B exclusion, and transcripts of PAL and HYH measured by quantitative real-time polymerase chain reaction were expressed at lower levels. UV-A linearly regulated the accumulation of quercetin-3-galactoside and quercetin-3-arabinopyranoside and had a quadratic effect on HYH expression. Furthermore, there were strong positive correlations between PAL expression and accumulation of four flavonols under the UV treatments. Our findings in silver birch contribute to a more detailed understanding of plant responses to solar UV radiation at both molecular and metabolite levels.

Journal ArticleDOI
TL;DR: The results suggest that the original calibration of Granier is not universally applicable to all species and xylem types and that previous estimates of absolute rates of water use for ring-porous species obtained using the original calibrated coefficients may be associated with substantial error.
Abstract: Thermal dissipation probes (the Granier method) are routinely used in forest ecology and water balance studies to estimate whole-tree transpiration. This method utilizes an empirically derived equation to measure sap flux density, which has been reported as independent of wood characteristics. However, errors in calculated sap flux density may occur when large gradients in sap velocity occur along the sensor length or when sensors are inserted into non-conducting wood. These may be conditions routinely associated with ring-porous species, yet there are few cases in which the original calibration has been validated for ring-porous species. We report results from laboratory calibration measurements conducted on excised stems of four ring-porous species and two diffuse-porous species. Our calibration results for ring-porous species were considerably different compared with the original calibration equation. Calibration equation coefficients obtained in this study differed by as much as two to almost three orders of magnitude when compared with the original equation of Granier. Coefficients also differed between ring-porous species across all pressure gradient conditions considered; however, no differences between calibration slopes were observed for data collected within the range of expected in situ pressure gradients. In addition, dye perfusions showed that in three of the four ring-porous species considered, active sapwood was limited to the outermost growth ring. In contrast, our calibration results for diffuse-porous species showed generally good agreement with the empirically derived Granier calibration, and dye perfusions showed that active sapwood was associated with many annual growth rings. Our results suggest that the original calibration of Granier is not universally applicable to all species and xylem types and that previous estimates of absolute rates of water use for ring-porous species obtained using the original calibration coefficients may be associated with substantial error.

Journal ArticleDOI
TL;DR: Seven AQPs were upregulated in the stem xylem of high N plants, five of which have been identified recently as water transporters, and it is suggested that some of these water-transporting AQPs could play a role in xylogenesis, facilitating the influx of water into the zone of differentiating and maturing cells in secondary Xylem, including expanding vessels.
Abstract: We studied the influence of nitrogen (N) on hydraulic traits and aquaporin (AQP) expression in the stem xylem of hybrid poplar saplings (Populus trichocarpa (Torr. & Gray) × deltoides Bartr. ex Marsh clone H11-11). Plants were grown in a controlled environment and were kept well watered throughout the experiments. Hydraulic measurements were done on basal and distal stem segments of plants receiving high N fertilization (high N plants) versus plants receiving only adequate N fertilization (adequate N plants). High N plants grew faster and exhibited more leaf area than adequate N controls. These morphological differences were paralleled by wider vessels and higher specific conductivities (K S ) in high N plants. However, stems of high N plants were more vulnerable to xylem cavitation, at least in one of two experiments, and showed lower wood densities than stems of adequate N plants. Leaf area was strongly correlated with cross-sectional xylem area in both plant groups. Since higher K S in high N plants was accompanied by concomitant increases in leaf area, leaf-specific conductivities were similar in both plant groups. Influences of N on hydraulic traits were paralleled by changes in AQP expression. Seven AQPs were upregulated in the stem xylem of high N plants, five of which have been identified recently as water transporters. The enhanced growth of secondary xylem of high N plants has been shown to result from both increased cambial activity as well as increased cell size. We suggest that some of these water-transporting AQPs could play a role in xylogenesis, facilitating the influx of water into the zone of differentiating and maturing cells in secondary xylem, including expanding vessels.

Journal ArticleDOI
TL;DR: Stem growth alone is not a sufficient proxy for total biomass production or the control of carbon sequestration by weather extremes, and only in mast years a short-term carbon shortage may occur in spring.
Abstract: The periodic production of large seed crops by trees (masting) and its interaction with stem growth has long been the objective of tree physiology research. However, very little is known about the effects of masting on stem growth and total net primary productivity (NPP) at the stand scale. This study was conducted in an old-growth, mixed deciduous forest dominated by Fagus sylvatica (L.) and covers the period from 2003 to 2007, which comprised wet, dry and regular years as well as two masts of Fagus and one mast of the co-dominant tree species Fraxinus excelsior (L.) and Acer pseudoplatanus (L.). We combined analyses of weather conditions and stem growth at the tree level (inter- and intra-annual) with fruit, stem and leaf production, and estimates of total NPP at the stand level. Finally, we compared the annual demand of carbon for biomass production with net canopy assimilation (NCA), derived from eddy covariance flux measurements, chamber measurements and modelling. Annual stem growth of Fagus was most favoured by warm periods in spring and that of Fraxinus by high precipitation in June. For stem growth of Acer and for fruit production, no significant relationships with mean weather conditions were found. Intra-annual stem growth of all species was strongly reduced when the relative plant-available water in soil dropped below a threshold of about 60% between May and July. The inter-annual variations of NCA, total NPP and leaf NPP at the stand level were low (mean values 1313, 662 and 168 g C m(-2) year(-1), respectively), while wood and fruit production varied more and contrarily (wood: 169-241 g C m(-2) year(-1); fruits: 21-142 g C m(-2) year(-1)). In all years, an annual surplus of newly assimilated carbon was calculated (on average 100 g C m(-2) year(-1)). The results suggest that stem growth is generally not limited by insufficient carbon resources; only in mast years a short-term carbon shortage may occur in spring. In contrast to common assumption, stem growth alone is not a sufficient proxy for total biomass production or the control of carbon sequestration by weather extremes.

Journal ArticleDOI
TL;DR: Investigation of sub-regional temperature and precipitation trends and measure the basal area increment (BAI) in Pinus nigra subsp.
Abstract: Summary The understanding of regional vulnerability to climate change in Mediterranean mountain forests is not well developed. Climate change impacts on tree growth should be strongly related to the steep environmental gradients of mountainous areas, where a temperature-induced upward shift of the lower elevation limit is expected, particularly amongst drought-sensitive species. Trees will adapt not only to changes in mean climate variables but also to increased extreme events such as prolonged drought. In this paper, we investigate the sub-regional temperature and precipitation trends and measure the basal area increment (BAI) in Pinus nigra subsp. salzmannii (Dunal) Franco. Significant differences related to altitudinal and latitudinal gradients and stand-age structure were found in response to long-term trends in climate dryness. Old trees growing at higher elevations showed similar extreme drought sensitivity but maintained almost steady BAI. Declining BAI found in trees at lower elevations and drier sites may imply a higher vulnerability to temperature-induced drought stress, suggesting an impending growth decline and an enhanced die-off risk. Our results illustrate how the effects of long-term warming and short-term drought on tree BAI are influenced by both site conditions and mean stand age in a drought-sensitive Mediterranean pine.

Journal ArticleDOI
TL;DR: Molecular, biochemical and electrophysiological investigations indicate a strong involvement of specific K(+) channels in the regulation of xylem cell expansion and a significant influence of Ca²(+) on the onset of cambial reactivation after winter dormancy as well as on wood structure and chemistry.
Abstract: Potassium and calcium are essential for tree metabolism and various physiological processes related to growth. In recent years, special interest was therefore accorded to the effect of both cations on cambial activity and xylem development. Various studies revealed a distinct correlation between potassium as well as calcium nutrition and wood formation. When poplar trees were grown under low K(+) or Ca²(+) regimes, the cambial activity as well as the seasonal rate of wood increment and the vessel size were significantly reduced. Molecular, biochemical and electrophysiological investigations indicate (i) a strong involvement of specific K(+) channels in the regulation of xylem cell expansion and (ii) a significant influence of Ca²(+) on the onset of cambial reactivation after winter dormancy as well as on wood structure and chemistry. These studies highlight the important role of potassium as well as calcium in xylogenesis. Based on that knowledge, further research will be directed towards a better understanding of the mechanisms governing K(+)- as well as Ca²(+)-dependent wood formation.

Journal ArticleDOI
TL;DR: A simple drought index before and during the irrigation explained most of the variation found in the parameters for both irrigated and control trees, indicating that seemingly declining trees were able to 'recover' when water supply became sufficient.
Abstract: Summary In Valais, Switzerland, Scots pines (Pinus sylvestris L.) are declining, mainly following drought. To assess the impact of drought on tree growth and survival, an irrigation experiment was initiated in 2003 in a mature pine forest, approximately doubling the annual precipitation. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Seven irrigated and six control trees were felled in 2006, and needles, stem discs and branches were taken for growth analysis. Irrigation in 2004 and 2005, both with below-average precipitation, increased needle size, area and mass, stem growth and, with a 1-year delay, shoot length. This led to a relative decrease in tree crown transparency (− 14%) and to an increase in stand LAI (+20%). Irrigation increased needle length by 70%, shoot length by 100% and ring width by 120%, regardless of crown transparency. Crown transparency correlated positively with mean needle size, shoot length and ring width and negatively with specific leaf area. Trees with high crown transparency (low growth, short needles) experienced similar increases in needle mass and growth with irrigation than trees with low transparency (high growth, long needles), indicating that seemingly declining trees were able to ‘recover’ when water supply became sufficient. A simple drought index before and during the irrigation explained most of the variation found in the parameters for both irrigated and control trees.

Journal ArticleDOI
TL;DR: The results strongly suggest that NO functions as a signal in salt resistance of A. marina by enhancing salt secretion and Na(+) sequestration, which depend on the increased expression of the H(+)-ATPase andNa(+)/H(+) antiporter.
Abstract: Natural Science Foundation of China (NSFC) [30930076, 30770192, 30670317, 30271065, 39970438]; Foundation of the Chinese Ministry of Education [209084]; Xiamen University [NCETXMU X071l5]; Changjiang Scholarship [X09111]

Journal ArticleDOI
TL;DR: Results obtained indicate a high resilience of the photosynthetic apparatus to summer drought as well as good recovery in the following autumn rains of these evergreen oak species.
Abstract: Responses of leaf water relations and photosynthesis to summer drought and autumn rewetting were studied in two evergreen Mediterranean oak species, Quercus ilex spp. rotundifolia and Quercus suber. The predawn leaf water potential (Ψ lPD ), stomatal conductance (gs) and photosynthetic rate (A) at ambient conditions were measured seasonally over a 3-year period. We also measured the photosynthetic response to light and to intercellular CO 2 (A/PPFD and A/C i response curves) under water stress (summer) and after recovery due to autumn rainfall. Photosynthetic parameters, Vc max , J max and triose phosphate utilization (TPU) rate, were estimated using the Farquhar model. RuBisCo activity, leaf chlorophyll, leaf nitrogen concentration and leaf carbohydrate concentration were also measured. All measurements were performed in the spring leaves of the current year. In both species, the predawn leaf water potential, stomatal conductance and photosynthetic rate peaked in spring, progressively declined throughout the summer and recovered upon autumn rainfall. During the drought period, Q. ilex maintained a higher predawn leaf water potential and stomatal conductance than Q. suber. During this period, we found that photosynthesis was not only limited by stomatal closure, but was also downregulated as a consequence of a decrease in the maximum carboxylation rate (Vc max ) and the light-saturated rate of photosynthetic electron transport (J max ) in both species. The Vc max and J max increased after the first autumnal rains and this increase was related to RuBisCo activity, leaf nitrogen concentration and chlorophyll concentration. In addition, an increase in the TPU rate and in soluble leaf sugar concentration was observed in this period. The results obtained indicate a high resilience of the photosynthetic apparatus to summer drought as well as good recovery in the following autumn rains of these evergreen oak species.

Journal ArticleDOI
TL;DR: It was demonstrated how transpiration and photosynthesis rates, metabolic and physiological processes and structural features of a tree mediate their effects directly on the local water and sugar status and influence cambial growth.
Abstract: Cambial growth was modelled as a function of detailed levelled physiological processes for cell enlargement and water and sugar transport to the cambium. Cambial growth was described at the cell level where local sugar concentration and turgor pressure induce irreversible cell expansion and cell wall synthesis. It was demonstrated how transpiration and photosynthesis rates, metabolic and physiological processes and structural features of a tree mediate their effects directly on the local water and sugar status and influence cambial growth. Large trees were predicted to be less sensitive to changes in the transient water and sugar status, compared with smaller ones, as they have more water and sugar storage and were, therefore, less coupled to short-term changes in the environment. Modelling the cambial dynamics at the individual cell level turned out to be a complex task as the radial short-distance transport of water and sugars and control signals determining cell division and cessation of cell enlargement and cell wall synthesis had to be described simultaneously.

Journal ArticleDOI
TL;DR: Girdling experiments on poplar showed that stachyose accumulated during winter also in the roots, even in girdled plants, consistent with its importance as freezing protectant, and depleted root starch reserves nearly to zero.
Abstract: Summary Trees need to store reserves to allow their survival during winter and for bud flush and leaf growth in the following spring. In many tree species, these reserve functions are mainly covered by starch, which is degraded to soluble carbohydrates during the dormant season for maintenance respiration and in spring during bud flush. We conducted girdling experiments on poplar (Populus deltoides × nigra cv. Dorskamp) in order to elucidate how interrupted transport of carbohydrates to the roots during autumn affects plant survival during winter and bud flush in spring. We measured the content of starch, sucrose, glucose, fructose, raffinose and stachyose in stems (above and below the girdle), coarse roots and fine roots over 1 year. We found that, in response to girdling, carbohydrates accumulated in stems above the girdle. As a result of interrupted reserve allocation, girdled plants depleted their root starch reserves nearly to zero, whereas in stems below the girdle, reserves were maintained close to control values, presumably in order to facilitate dormancy release and re-sprouting from buds below the girdle. Furthermore, we showed that stachyose accumulated during winter also in the roots, even in girdled plants, consistent with its importance as freezing protectant. The lower stachyose content of roots compared with shoots was likely due to protection of the roots from cold by the soil.

Journal ArticleDOI
TL;DR: Sap flow in two co-occurring evergreen species in a temperate woodland for 2 years is assessed, finding that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows.
Abstract: Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

Journal ArticleDOI
TL;DR: Comparisons with other tree taxa suggest that trees with higher proportions of young foliage may exhibit greater J(s,n) and nocturnal g(s) (g(s),n), and prediction of noCTurnal flux in Eucalyptus may depend on simultaneous knowledge of intra-specific tree traits andnocturnal atmospheric conditions.
Abstract: To identify environmental and biological drivers of nocturnal vapour exchange, we quantified intra-annual, intra- and inter-specific variation in nocturnal water transport among ecologically diverse Eucalyptus species. We measured sap flux (J(s)) and leaf physiology (leaf surface conductance (g(s)), transpiration (E) and water potential (Psi(l))) in three to five trees of eight species. Over 1 year, nocturnal J(s) (J(s,n)) contributed 5-7% of total J(s) in the eight species. The principal environmental driver of J(s,n) was the product of atmospheric vapour pressure deficit (D) and wind speed (U). Selected observations suggest that trees with higher proportions of young foliage may exhibit greater J(s,n) and nocturnal g(s) (g(s,n)). Compared with other tree taxa, nocturnal water use in Eucalyptus was relatively low and more variable within than between species, suggesting that (i) Eucalyptus as a group exerts strong nocturnal stomatal control over water loss and (ii) prediction of nocturnal flux in Eucalyptus may depend on simultaneous knowledge of intra-specific tree traits and nocturnal atmospheric conditions.

Journal ArticleDOI
TL;DR: Quantitative reverse transcription polymerase chain reaction analysis confirmed differential expression of cDNAs coding for a Zn-finger transcription factor, a GRAS-like regulator, a DNA-binding protein and proteins similar to forisome subunits involved in the reversible occlusion of sieve elements in Fabaceae, among others.
Abstract: Summary To better understand the molecular and physiological mechanisms underlying maintenance and release of seasonal bud dormancy in perennial trees, we identified differentially expressed genes during dormancy progression in reproductive buds from peach (Prunus persica [L.] Batsch) by suppression subtractive hybridization (SSH) and microarray hybridization. Four SSH libraries were constructed, which were respectively enriched in cDNA highly expressed in dormant buds (named DR), in dormancy-released buds (RD) and in the cultivars with different chilling requirement, ‘Zincal 5’ (ZS) and ‘Springlady’ (SZ), sampled after dormancy release. About 2500 clones picked from the four libraries were loaded on a glass microarray. Hybridization of microarrays with the final products of SSH procedure was performed in order to validate the selected clones that were effectively enriched in their respective sample. Nearly 400 positive clones were sequenced, which corresponded to 101 different unigenes with diverse functional annotation. We obtained DAM4, 5 and 6 genes coding for MADS-box transcription factors previously related to growth cessation and terminal bud formation in the evergrowing mutant of peach. Several other cDNAs are similar to dormancy factors described in other species, and others have been related to bud dormancy for the first time in this study. Quantitative reverse transcription polymerase chain reaction analysis confirmed differential expression of cDNAs coding for a Zn-finger transcription factor, a GRAS-like regulator, a DNA-binding protein and proteins similar to forisome subunits involved in the reversible occlusion of sieve elements in Fabaceae, among others.

Journal ArticleDOI
TL;DR: This review focuses on the major nutrients, namely N and P, and deals with the effects of climate change on the processes that alter their cycling and availability.
Abstract: Although tree nutrition has not been the primary focus of large climate change experiments on trees, we are beginning to understand its links to elevated atmospheric CO₂ and temperature changes. This review focuses on the major nutrients, namely N and P, and deals with the effects of climate change on the processes that alter their cycling and availability. Current knowledge regarding biotic and abiotic agents of weathering, mobilization and immobilization of these elements will be discussed. To date, controlled environment studies have identified possible effects of climate change on tree nutrition. Only some of these findings, however, were verified in ecosystem scale experiments. Moreover, to be able to predict future effects of climate change on tree nutrition at this scale, we need to progress from studying effects of single factors to analysing interactions between factors such as elevated CO₂, temperature or water availability.

Journal ArticleDOI
TL;DR: It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in treeOntario, Canada.
Abstract: Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

Journal ArticleDOI
TL;DR: The role of variations in root and branch maximum hydraulic specific conductivity under high and low soil moisture in determining whole-tree hydraulic conductance and in mediating stomatal control of gas exchange in four contrasting tree species growing under ambient and elevated CO₂ was studied.
Abstract: Summary Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here, we study the role of variations in root and branch maximum hydraulic specific conductivity (ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in four contrasting tree species growing under ambient and elevated CO2 (CO2 a and CO2 e ). We hypothesized that Ktree would adjust to CO2 e through an increase in root and branch ks-max in response to anatomical adjustments. However, physiological changes observed under CO2 e were not clearly related to structural change in the xylem of any of the species. The only large effect of CO2 e occurred in branches of Liquidambar styraciflua L. and Cornus florida L. where an increase in ks-max and a decrease in xylem resistance to embolism (−P50) were measured. Across species, embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of Gs-ref, the sap-flux-scaled mean canopy stomatal conductance at a reference vapour pressure deficit of 1 kPa. Across roots and branches, the increase in ks-max was associated with a decrease in −P50, a consequence of structural acclimation such as larger conduits, lower pit resistance and lower wood density. Across species, treatment-induced changes in Ktree translated to similar variation in Gs-ref. However, the relationship between Gs-ref and Ktree under CO2 a was steeper than under CO2 e , indicating that CO2 e trees have lower Gs-ref at a given Ktree than CO2 a trees. Under high soil moisture, CO2 e greatly reduced Gs-ref. Under low soil moisture, CO2 e reduced Gs-ref of only L. styraciflua and Ulmus alata. In some species, higher xylem dysfunction under CO2 e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and anatomical mechanisms underpinning the responses of tree species to drought and more generally to global change.

Journal ArticleDOI
TL;DR: The results demonstrate that the drought response of P. abies seedlings include a number of parallel physiological and biochemical changes in concert, enhancing the capability of plants to survive and grow during drought periods, but only to a point.
Abstract: Four-year-old seedlings of Picea abies [L.] Karst (Norway spruce) were grown in semi-controlled conditions with three watering regimes. The seedlings in the control group (c) were watered to prevent any dehydration effect. The two remaining groups were subjected to mild (ms) and severe water stress (ss), respectively. The following physiological variables were monitored until ss seedlings began to die: leaf water potential (psi(L)), stomatal conductance (g(s)), CO(2) exchange (P(N)), free proline content (Pro), total chlorophyll (a + b) concentration (Chl(t)) and the maximal photochemical efficiency of photosystem II (F(v)/F(m)). The results indicate that not all observed physiological parameters display the same degree of sensitivity to dehydration. After Day 12 of dehydration, psi(L) of ss seedlings was already significantly lower than that of the two other groups. On Day 26, significant differences in psi(L) were recorded among all treatments. Decreasing values of water potential were accompanied by early changes in P(N), g(s) and Pro. A significant decrease in Chl(t) and F(v)/F(m) were only observed during the more advanced stages of dehydration. These results demonstrate that the drought response of P. abies seedlings include a number of parallel physiological and biochemical changes in concert, enhancing the capability of plants to survive and grow during drought periods, but only to a point.

Journal ArticleDOI
TL;DR: Pine mistletoe increases the risk of drought-induced mortality of its host when growing in a xeric environment, and might lead to a decrease in the availability of water and carbohydrates, the two most important growth factors, which are already shortened due to the chronic drought situation in the area.
Abstract: Summary Increasing Scots pine (Pinus sylvestris L.) mortality has been recently observed in the dry inner valleys of the European Alps. Besides drought, infection with pine mistletoe (Viscum album ssp. austriacum) seems to play an important role in the mortality dynamics of Scots pines, but how mistletoes promote pine decline remains unclear. To verify whether pine mistletoe infection weakens the host via crown degradation, as observed for dwarf mistletoes, we studied the negative effects of pine mistletoe infestation on the photosynthetic tissues and branch growth of pairs of infested and noninfested branches. Pine mistletoe infection leads to crown degradation in its host by reducing the length, the radial increment, the ramification, the needle length and the number of needle years of the infested branches. This massive loss in photosynthetic tissue results in a reduction in primary production and a subsequent decrease in carbohydrate availability. The significant reduction in needle length due to mistletoe infection is an indication for a lower water and nutrient availability in infested branches. Thus, mistletoe infection might lead to a decrease in the availability of water and carbohydrates, the two most important growth factors, which are already shortened due to the chronic drought situation in the area. Therefore, pine mistletoe increases the risk of drought-induced mortality of its host when growing in a xeric environment.