scispace - formally typeset
Search or ask a question
JournalISSN: 1010-4283

Tumor Biology 

SAGE Publishing
About: Tumor Biology is an academic journal published by SAGE Publishing. The journal publishes majorly in the area(s): Cancer & Cell growth. It has an ISSN identifier of 1010-4283. It is also open access. Over the lifetime, 7379 publications have been published receiving 175075 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Interleukin-6 (IL-6), one of the major cytokines in the tumour microenvironment, is an important factor which is found at high concentrations and known to be deregulated in cancer.
Abstract: In the last several decades, the number of people dying from cancer-related deaths has not reduced significantly despite phenomenal advances in the technologies related to diagnosis and therapeutic modalities The principal cause behind limitations in the curability of this disease is the reducing sensitivity of the cancer cells towards conventional anticancer therapeutic modalities, particularly in advance stages of the disease Amongst several reasons, certain secretory factors released by the tumour cells into the microenvironment have been found to confer resistance towards chemo- and radiotherapy, besides promoting growth Interleukin-6 (IL-6), one of the major cytokines in the tumour microenvironment, is an important factor which is found at high concentrations and known to be deregulated in cancer Its overexpression has been reported in almost all types of tumours The strong association between inflammation and cancer is reflected by the high IL-6 levels in the tumour microenvironment, where it promotes tumorigenesis by regulating all hallmarks of cancer and multiple signalling pathways, including apoptosis, survival, proliferation, angiogenesis, invasiveness and metastasis, and, most importantly, the metabolism Moreover, IL-6 protects the cancer cells from therapy-induced DNA damage, oxidative stress and apoptosis by facilitating the repair and induction of countersignalling (antioxidant and anti-apoptotic/pro-survival) pathways Therefore, blocking IL-6 or inhibiting its associated signalling independently or in combination with conventional anticancer therapies could be a potential therapeutic strategy for the treatment of cancers with IL-6-dominated signalling

645 citations

Journal ArticleDOI
Zheyu Song1, Yuanyu Wu1, Jiebing Yang1, Dingquan Yang1, Xuedong Fang1 
TL;DR: Several common methods used to treat advanced gastric cancer are summarized and the progress made in the treatment of Gastric cancer in detail is discussed.
Abstract: Gastric cancer is one of the most common malignant tumors in the digestive system. Surgery is currently considered to be the only radical treatment. As surgical techniques improve and progress is made in traditional radiotherapy, chemotherapy, and the implementation of neoadjuvant therapy, the 5-year survival rate of early gastric cancer can reach >95%. However, the low rate of early diagnosis means that most patients have advanced-stage disease at diagnosis and so the best surgical window is missed. Therefore, the main treatment for advanced gastric cancer is the combination of neoadjuvant chemoradiotherapy, molecular-targeted therapy, and immunotherapy. In this article, we summarize several common methods used to treat advanced gastric cancer and discuss the progress made in the treatment of gastric cancer in detail. Only clinical practice and clinical research will allow us to prolong the survival time of patients and allow the patients to truly benefit by paying attention to the individual patient cha...

579 citations

Journal ArticleDOI
TL;DR: In this review, apoptosis and mitotic catastrophe, the two major cell deaths induced by radiation, are described and dissected in terms of activating mechanisms.
Abstract: The main goal when treating malignancies with radiation therapy is to deprive tumor cells of their reproductive potential. One approach to achieve this is by inducing tumor cell apoptosis. Accumulating evidences suggest that induction of apoptosis alone is insufficient to account for the therapeutic effect of radiotherapy. It has become obvious in the last few years that inhibition of the proliferative capacity of malignant cells following irradiation, especially with solid tumors, can occur via alternative cell death modalities or permanent cell cycle arrests, i.e., senescence. In this review, apoptosis and mitotic catastrophe, the two major cell deaths induced by radiation, are described and dissected in terms of activating mechanisms. Furthermore, treatment-induced senescence and its relevance for the outcome of radiotherapy of cancer will be discussed. The importance of p53 for the induction and execution of these different types of cell deaths is highlighted. The efficiency of radiotherapy and radioimmunotherapy has much to gain by understanding the cell death mechanisms that are induced in tumor cells following irradiation. Strategies to use specific inhibitors that will manipulate key molecules in these pathways in combination with radiation might potentiate therapy and enhance tumor cell kill.

552 citations

Journal ArticleDOI
TL;DR: How collagen can be a double-edged sword in tumor progression, both inhibiting and promoting tumor progression at different stages of cancer development is discussed.
Abstract: It has been recognized that cancer is not merely a disease of tumor cells, but a disease of imbalance, in which stromal cells and tumor microenvironment play crucial roles. Extracellular matrix (ECM) as the most abundant component in tumor microenvironment can regulate tumor cell behaviors and tissue tension homeostasis. Collagen constitutes the scaffold of tumor microenvironment and affects tumor microenvironment such that it regulates ECM remodeling by collagen degradation and re-deposition, and promotes tumor infiltration, angiogenesis, invasion and migration. While collagen was traditionally regarded as a passive barrier to resist tumor cells, it is now evident that collagen is also actively involved in promoting tumor progression. Collagen changes in tumor microenvironment release biomechanical signals, which are sensed by both tumor cells and stromal cells, trigger a cascade of biological events. In this work, we discuss how collagen can be a double-edged sword in tumor progression, both inhibiting and promoting tumor progression at different stages of cancer development.

445 citations

Journal ArticleDOI
TL;DR: This review has focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies and novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Abstract: As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.

398 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202316
202220
202122
202050
2019129
2018119