Journal•ISSN: 0301-5629
Ultrasound in Medicine and Biology
Elsevier BV
About: Ultrasound in Medicine and Biology is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Ultrasound & Medicine. It has an ISSN identifier of 0301-5629. Over the lifetime, 8770 publications have been published receiving 273458 citations. The journal is also known as: Ultrasound in Medicine & Biology.
Topics: Ultrasound, Medicine, Microbubbles, Imaging phantom, Doppler effect
Papers published on a yearly basis
Papers
More filters
TL;DR: Liver elasticity measurements were reproducible, operator-independent and well correlated and the intra- and interoperator reproducibility of the technique, as well as its ability to quantify liver fibrosis, were evaluated in 106 patients with chronic hepatitis C.
Abstract: Chronic hepatitis is accompanied by progressive deposit of hepatic fibrosis, which may lead to cirrhosis. Evaluation of liver fibrosis is, thus, of great clinical interest and, up to now, has been assessed with liver biopsy. This work aims to evaluate a new noninvasive device to quantify liver fibrosis: the shear elasticity probe or fibroscan. This device is based on one-dimensional (1-D) transient elastography, a technique that uses both ultrasound (US) (5 MHz) and low-frequency (50 Hz) elastic waves, whose propagation velocity is directly related to elasticity. The intra- and interoperator reproducibility of the technique, as well as its ability to quantify liver fibrosis, were evaluated in 106 patients with chronic hepatitis C. Liver elasticity measurements were reproducible (standardized coefficient of variation: 3%), operator-independent and well correlated (partial correlation coefficient = 0.71, p /= F2) and with cirrhosis ( = F4), respectively. The Fibroscan is a noninvasive, painless, rapid and objective method to quantify liver fibrosis.
2,517 citations
TL;DR: A physical and mathematical basis of SWEI is presented and some experimental results of pilot studies proving feasibility of this new ultrasonic technology are presented, including a theoretical model of shear oscillations in soft biological tissue remotely induced by the radiation force of focused ultrasound.
Abstract: Shear wave elasticity imaging (SWEI) is a new approach to imaging and characterizing tissue structures based on the use of shear acoustic waves remotely induced by the radiation force of a focused ultrasonic beam. SWEI provides the physician with a virtual "finger" to probe the elasticity of the internal regions of the body. In SWEI, compared to other approaches in elasticity imaging, the induced strain in the tissue can be highly localized, because the remotely induced shear waves are attenuated fully within a very limited area of tissue in the vicinity of the focal point of a focused ultrasound beam. SWEI may add a new quality to conventional ultrasonic imaging or magnetic resonance imaging. Adding shear elasticity data ("palpation information") by superimposing color-coded elasticity data over ultrasonic or magnetic resonance images may enable better differentiation of tissues and further enhance diagnosis. This article presents a physical and mathematical basis of SWEI with some experimental results of pilot studies proving feasibility of this new ultrasonic technology. A theoretical model of shear oscillations in soft biological tissue remotely induced by the radiation force of focused ultrasound is described. Experimental studies based on optical and magnetic resonance imaging detection of these shear waves are presented. Recorded spatial and temporal profiles of propagating shear waves fully confirm the results of mathematical modeling. Finally, the safety of the SWEI method is discussed, and it is shown that typical ultrasonic exposure of SWEI is significantly below the threshold of damaging effects of focused ultrasound.
1,632 citations
TL;DR: Experimental results are presented demonstrating that displacements on the order of 10 microm can be generated and detected in soft tissues in vivo using a single transducer on a modified diagnostic US scanner and support the clinical feasibility of a radiation force-based remote palpation imaging system.
Abstract: The clinical viability of a method of acoustic remote palpation, capable of imaging local variations in the mechanical properties of soft tissue using acoustic radiation force impulse (ARFI) imaging, is investigated in vivo. In this method, focused ultrasound (US) is used to apply localized radiation force to small volumes of tissue (2 mm(3)) for short durations (less than 1 ms) and the resulting tissue displacements are mapped using ultrasonic correlation-based methods. The tissue displacements are inversely proportional to the stiffness of the tissue and, thus, a stiffer region of tissue exhibits smaller displacements than a more compliant region. Due to the short duration of the force application, this method provides information about the mechanical impulse response of the tissue, which reflects variations in tissue viscoelastic characteristics. In this paper, experimental results are presented demonstrating that displacements on the order of 10 microm can be generated and detected in soft tissues in vivo using a single transducer on a modified diagnostic US scanner. Differences in the magnitude of displacement and the transient response of tissue are correlated with tissue structures in matched B-mode images. The results comprise the first in vivo ARFI images, and support the clinical feasibility of a radiation force-based remote palpation imaging system.
1,085 citations
Seoul National University1, Hammersmith Hospital2, Kindai University3, University of Copenhagen4, University of Bologna5, University of Calgary6, Northeast Ohio Medical University7, University of São Paulo8, Jaslok Hospital9, Peking Union Medical College10, Ludwig Maximilian University of Munich11, University of Paris12, Fudan University13, Thomas Jefferson University14, University of Michigan15, University of Melbourne16, Institut Gustave Roussy17, Imperial College London18, University of California, San Diego19, Tokyo Medical University20, Tongji University21
TL;DR: These liver CEUS guidelines and recommendations are intended to create standard protocols for the use and administration of UCA in liver applications on an international basis and improve the management of patients worldwide.
Abstract: Initially, a set of guidelines for the use of ultrasound contrast agents was published in 2004 dealing only with liver applications. A second edition of the guidelines in 2008 reflected changes in the available contrast agents and updated the guidelines for the liver, as well as implementing some non-liver applications. Time has moved on, and the need for international guidelines on the use of CEUS in the liver has become apparent. The present document describes the third iteration of recommendations for the hepatic use of contrast enhanced ultrasound (CEUS) using contrast specific imaging techniques. This joint WFUMB-EFSUMB initiative has implicated experts from major leading ultrasound societies worldwide. These liver CEUS guidelines are simultaneously published in the official journals of both organizing federations (i.e., Ultrasound in Medicine and Biology for WFUMB and Ultraschall in der Medizin/European Journal of Ultrasound for EFSUMB). These guidelines and recommendations provide general advice on the use of all currently clinically available ultrasound contrast agents (UCA). They are intended to create standard protocols for the use and administration of UCA in liver applications on an international basis and improve the management of patients worldwide.
1,042 citations
TL;DR: The Doppler methods are capable of good absolute accuracy when suitably designed equipment is used in appropriate situations, with systematic errors of 6% of less; there are, however, considerable random errors.
Abstract: Doppler ultrasound has now developed to the point where the rate of flow of blood in a given vessel can be measured with appropriate instrumentation. The theoretical basis of Doppler flow measurement is reviewed in this paper, with particular emphasis on the potential and actual sources of error. Three distinct approaches are identified, and the strengths and weaknesses of each discussed. The separate errors involved in estimating the vessel cross-sectional area, the angle of approach, and the Doppler shift are analyzed, together with the question of the uniformity of scattering from the blood. In vivo and in vitro tests of the accuracy obtained using a number of Doppler flow measuring instruments are then reviewed. It is concluded that the Doppler methods are capable of good absolute accuracy when suitably designed equipment is used in appropriate situations, with systematic errors of 6% of less. There are, however, considerable random errors, attributable primarily to errors in measuring the cross-sectional area and the angle of approach. Repeating the measurement of flow several times and averaging the results can reduce these random errors to an acceptable level.
768 citations