scispace - formally typeset
Search or ask a question
JournalISSN: 1759-7684

Wiley Interdisciplinary Reviews-Developmental Biology 

Wiley-Blackwell
About: Wiley Interdisciplinary Reviews-Developmental Biology is an academic journal. The journal publishes majorly in the area(s): Stem cell & Cellular differentiation. It has an ISSN identifier of 1759-7684. Over the lifetime, 316 publications have been published receiving 13682 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning.
Abstract: The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs) Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer © 2015 Wiley Periodicals, Inc

1,445 citations

Journal ArticleDOI
TL;DR: The knowledge of mammary gland development and mammary stem cell biology has significantly contributed to the understanding of breast cancer and has advanced the discovery of therapies to treat this disease.
Abstract: The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial–mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development—pubertal growth, pregnancy, lactation, and involution—occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone (GH) and estrogen, as well as insulin-like growth factor 1 (IGF1), to create a ductal tree that fills the fat pad. Upon pregnancy, the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its prepregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease.

577 citations

Journal ArticleDOI
TL;DR: The transforming growth factor (TGF)beta superfamily of secreted factors is comprised of over 30 members including Activins, Nodals, Bone Morphogenetic Proteins (BMPs), and Growth and Differentiation Factors (GDFs).
Abstract: The transforming growth factor (TGF)beta superfamily of secreted factors is comprised of over 30 members including Activins, Nodals, Bone Morphogenetic Proteins (BMPs), and Growth and Differentiation Factors (GDFs). Members of the family, which are found in both vertebrates and invertebrates, are ubiquitously expressed in diverse tissues and function during the earliest stages of development and throughout the lifetime of animals. Indeed, key roles in embryonic stem cell self-renewal, gastrulation, differentiation, organ morphogenesis, and adult tissue homeostasis have been delineated. Consistent with this ubiquitous activity, aberrant TGFbeta superfamily signaling is associated with a wide range of human pathologies including autoimmune, cardiovascular and fibrotic diseases, as well as cancer. TGFbeta superfamily ligands signal through cell-surface serine/threonine kinase receptors to the intracellular Smad proteins, which in turn accumulate in the nucleus to regulate gene expression. In addition to this universal cascade, Smad-independent pathways are also employed in a cell-specific manner to transduce TGFbeta signals. Ligand access to the signaling receptors is regulated by numerous secreted agonists and antagonists and by membrane-associated coreceptors that act in a context-dependent manner. Given the fundamental role of the TGFbeta superfamily in metazoans and the diversity of biological responses, it is not surprising that the signaling pathway is subject to tight and complex regulation at levels both outside and inside the cell. WIREs Dev Biol 2013, 2:47–63. doi: 10.1002/wdev.86 For further resources related to this article, please visit the WIREs website.

475 citations

Journal ArticleDOI
TL;DR: The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology and are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster.
Abstract: The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.

252 citations

Journal ArticleDOI
TL;DR: The current data indicate that the core promoter is a critical component in the regulation of gene activity as seen in the relation among transcription initiation patterns, the stability or lability of transcriptional states, and the organization of the chromatin structure in the promoter region.
Abstract: The RNA polymerase II core promoter is sometimes referred to as the gateway to transcription. The core promoter is generally defined to be the stretch of DNA that directs the initiation of transcription. This simple description belies a complex multidimensional regulatory element, as there is considerable diversity in core promoter structure and function. Core promoters can be viewed at the levels of DNA sequences, transcription factors, and biological networks. Key DNA sequences are known as core promoter elements, which include the TATA box, initiator (Inr), polypyrimidine initiator (TCT), TFIIB recognition element (BRE), motif ten element (MTE), and downstream core promoter element (DPE) motifs. There are no universal core promoter elements that are present in all promoters. Different types of core promoters are transcribed by different sets of transcription factors and exhibit distinct properties, such as specific interactions with transcriptional enhancers, that are determined by the presence or absence of particular core promoter motifs. Moreover, some core promoter elements have been found to be associated with specific biological networks. For instance, the TCT motif is dedicated to the transcription of ribosomal protein genes in Drosophila and humans. In addition, nearly all of the Drosophila Hox genes have a DPE motif in their core promoters. The complexity of the core promoter is further seen in the relation among transcription initiation patterns, the stability or lability of transcriptional states, and the organization of the chromatin structure in the promoter region. Hence, the current data indicate that the core promoter is a critical component in the regulation of gene activity.

235 citations

Network Information
Related Journals (5)
Developmental Biology
18.2K papers, 1.1M citations
88% related
Development
19.8K papers, 1.8M citations
88% related
Genes & Development
8.4K papers, 1.8M citations
83% related
Nature Cell Biology
5K papers, 900.4K citations
83% related
Current Biology
19.3K papers, 1.4M citations
81% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202114
202024
201915
201828
201730
201633