scispace - formally typeset
Search or ask a question

Showing papers in "Wireless Communications and Mobile Computing in 2017"


Journal ArticleDOI
TL;DR: This work proposes a vision-based solution using Convolutional Neural Networks to decide if a sequence of frames contains a person falling, and uses optical flow images as input to the networks followed by a novel three-step training phase.
Abstract: One of the biggest challenges in modern societies is the improvement of healthy aging and the support to older persons in their daily activities. In particular, given its social and economic impact, the automatic detection of falls has attracted considerable attention in the computer vision and pattern recognition communities. Although the approaches based on wearable sensors have provided high detection rates, some of the potential users are reluctant to wear them and thus their use is not yet normalized. As a consequence, alternative approaches such as vision-based methods have emerged. We firmly believe that the irruption of the Smart Environments and the Internet of Things paradigms, together with the increasing number of cameras in our daily environment, forms an optimal context for vision-based systems. Consequently, here we propose a vision-based solution using Convolutional Neural Networks to decide if a sequence of frames contains a person falling. To model the video motion and make the system scenario independent, we use optical flow images as input to the networks followed by a novel three-step training phase. Furthermore, our method is evaluated in three public datasets achieving the state-of-the-art results in all three of them.

184 citations


Journal ArticleDOI
TL;DR: An IoT based Semantic Interoperability Model (IoT-SIM) is proposed to provide Semantic interoperability among heterogeneous IoT devices in healthcare domain to provide annotations for data.
Abstract: Interoperability remains a significant burden to the developers of Internet of Things’ Systems. This is due to the fact that the IoT devices are highly heterogeneous in terms of underlying communication protocols, data formats, and technologies. Secondly due to lack of worldwide acceptable standards, interoperability tools remain limited. In this paper, we proposed an IoT based Semantic Interoperability Model (IoT-SIM) to provide Semantic Interoperability among heterogeneous IoT devices in healthcare domain. Physicians communicate their patients with heterogeneous IoT devices to monitor their current health status. Information between physician and patient is semantically annotated and communicated in a meaningful way. A lightweight model for semantic annotation of data using heterogeneous devices in IoT is proposed to provide annotations for data. Resource Description Framework (RDF) is a semantic web framework that is used to relate things using triples to make it semantically meaningful. RDF annotated patients’ data has made it semantically interoperable. SPARQL query is used to extract records from RDF graph. For simulation of system, we used Tableau, Gruff-6.2.0, and Mysql tools.

140 citations


Journal ArticleDOI
TL;DR: This paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs and presents a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications.
Abstract: Introducing mobility to Wireless Sensor Networks (WSNs) puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs). Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

121 citations


Journal ArticleDOI
TL;DR: The design challenges for cluster-based schemes, the important cluster formation parameters, and classification of hierarchical clustering protocols are discussed, and existing cluster- based and grid-based techniques are evaluated by considering certain parameters to help users in selecting appropriate technique.
Abstract: Wireless sensor networks (WSN) are one of the significant technologies due to their diverse applications such as health care monitoring, smart phones, military, disaster management, and other surveillance systems. Sensor nodes are usually deployed in large number that work independently in unattended harsh environments. Due to constraint resources, typically the scarce battery power, these wireless nodes are grouped into clusters for energy efficient communication. In clustering hierarchical schemes have achieved great interest for minimizing energy consumption. Hierarchical schemes are generally categorized as cluster-based and grid-based approaches. In cluster-based approaches, nodes are grouped into clusters, where a resourceful sensor node is nominated as a cluster head (CH) while in grid-based approach the network is divided into confined virtual grids usually performed by the base station. This paper highlights and discusses the design challenges for cluster-based schemes, the important cluster formation parameters, and classification of hierarchical clustering protocols. Moreover, existing cluster-based and grid-based techniques are evaluated by considering certain parameters to help users in selecting appropriate technique. Furthermore, a detailed summary of these protocols is presented with their advantages, disadvantages, and applicability in particular cases.

119 citations


Journal ArticleDOI
TL;DR: Common approaches for source localization in WASNs that are focused on different types of acoustic features, namely, the energy of the incoming signals, their time of arrival or time difference of arrival, the direction of arrival (DOA), and the steered response power (SRP) resulting from combining multiple microphone signals are reviewed.
Abstract: Wireless acoustic sensor networks (WASNs) are formed by a distributed group of acoustic-sensing devices featuring audio playing and recording capabilities. Current mobile computing platforms offer great possibilities for the design of audio-related applications involving acoustic-sensing nodes. In this context, acoustic source localization is one of the application domains that have attracted the most attention of the research community along the last decades. In general terms, the localization of acoustic sources can be achieved by studying energy and temporal and/or directional features from the incoming sound at different microphones and using a suitable model that relates those features with the spatial location of the source (or sources) of interest. This paper reviews common approaches for source localization in WASNs that are focused on different types of acoustic features, namely, the energy of the incoming signals, their time of arrival (TOA) or time difference of arrival (TDOA), the direction of arrival (DOA), and the steered response power (SRP) resulting from combining multiple microphone signals. Additionally, we discuss methods not only aimed at localizing acoustic sources but also designed to locate the nodes themselves in the network. Finally, we discuss current challenges and frontiers in this field.

117 citations


Journal ArticleDOI
TL;DR: A SHM platform embedded with IoT will estimate the size and location of structural damage, if any, and upload the data to Internet and this data will be stored and can be checked remotely from any mobile device.
Abstract: Increase in the demand for reliable structural health information led to the development of Structural Health Monitoring (SHM). Prediction of upcoming accidents and estimation of useful life span of a structure are facilitated through SHM. While data sensing is the core of any SHM, tracking the data anytime anywhere is a prevailing challenge. With the advancement in information technology, the concept of Internet of Things (IoT) has made it possible to integrate SHM with Internet to track data anytime anywhere. In this paper, a SHM platform embedded with IoT is proposed to detect the size and location of damage in structures. The proposed platform consists of a Wi-Fi module, a Raspberry Pi, an Analog to Digital Converter (ADC), a Digital to Analog Converter (DAC), a buffer, and piezoelectric (PZT) sensors. The piezoelectric sensors are mounted as a pair in the structure. Data collected from the piezoelectric sensors will be used to detect the size and location of damage using a proposed mathematical model. Implemented on a Raspberry Pi, the proposed mathematical model will estimate the size and location of structural damage, if any, and upload the data to Internet. This data will be stored and can be checked remotely from any mobile device. The system has been validated using a real test bed in the lab.

101 citations


Journal ArticleDOI
TL;DR: The present work reviews the state of the art in software defined networking providing a historical perspective on complementary technologies in network programmability and the inherent shortcomings which paved the way for SDN.
Abstract: Emerging network services and subsequent growth in the networking infrastructure have gained tremendous momentum in recent years. Application performance requiring rapid real-time network provisioning, optimized traffic management, and virtualization of shared resources has induced the conceptualization and adoption of new networking models. Software defined networking (SDN), one of the predominant and relatively new networking paradigms, seeks to simplify network management by decoupling network control logic from the underlying hardware and introduces real-time network programmability enabling innovation. The present work reviews the state of the art in software defined networking providing a historical perspective on complementary technologies in network programmability and the inherent shortcomings which paved the way for SDN. The SDN architecture is discussed along with popular protocols, platforms, and existing simulation and debugging solutions. Furthermore, a detailed analysis is presented around recent SDN development and deployment avenues ranging from mobile communications and data centers to campus networks and residential environments. The review concludes by highlighting implementation challenges and subsequent research directions being pursued in academia and industry to address issues related to application performance, control plane scalability and design, security, and interdomain connectivity in the context of SDN.

66 citations


Journal ArticleDOI
TL;DR: The proposed smart city framework operates on three levels: data generation and acquisition level collecting heterogeneous data related to city operations, data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and application level initiating execution of the events corresponding to the received decisions.
Abstract: The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: data generation and acquisition level collecting heterogeneous data related to city operations, data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture.

65 citations


Journal ArticleDOI
TL;DR: A novel clustering algorithm: Fuzzy Logic Based Energy Efficient Clustering Hierarchy (FLECH) for nonuniform WSN is contributed, which indicates the lifetime increase by FLECH over other algorithms and its energy conservation per round of data collection in the network.
Abstract: Lifetime of Wireless Sensor Network (WSN) is an important issue which affects its implementation in various real time applications. The major factor behind the energy consumption in WSN is its data collection mechanism. The direct data transmission from each sensor node to the Base Station (BS) consumes more energy than other alternatives. Also it is unnecessary, due to redundant data transmission because of geographically closer nodes. Clustering is the best data collection architectural model for WSN since it takes care of in-network processing which handles redundant data within the network. The techniques used for the network having uniform node distribution are not suitable for the networks which have nonuniformly distributed nodes. This paper contributes a novel clustering algorithm: Fuzzy Logic Based Energy Efficient Clustering Hierarchy (FLECH) for nonuniform WSN. The clusters in FLECH are created using proper parameters which increases the lifetime of the WSN. Fuzzy logic in FLECH is wisely used to combine important parameters like residual energy, node centrality, and distance to BS for electing best suitable nodes as CH and increases the network lifetime. FLECH performance is verified in different scenarios and the results are compared with LEACH, CHEF, ECPF, EAUCF, and MOFCA. The simulation results clearly indicate the lifetime increase by FLECH over other algorithms and its energy conservation per round of data collection in the network.

63 citations


Journal ArticleDOI
TL;DR: This paper presents the up-to-date research approaches and discusses the important features related to real-time communications in wireless sensor networks, and categorizes the approaches into hard, soft, and firm real- time model.
Abstract: Generally, various traffic requirements in wireless sensor network are mostly dependent on specific application types, that is, event-driven, continuous, and query-driven types. In these applications, real-time delivery is one of the important research challenges. However, due to harsh networking environment around a node, many researchers usually take different approach from conventional networks. In order to discuss and analyze the advantage or disadvantage of these approaches, some comprehensive survey literatures were published; however they are either out of date or compiled for communication protocols on single layer. Based on this deficiency, in this paper, we present the up-to-date research approaches and discuss the important features related to real-time communications in wireless sensor networks. As for grouping, we categorize the approaches into hard, soft, and firm real-time model. Furthermore, in all these categories, research has been focused on MAC and scheduling and routing according to research area or objective in second level. Finally, the article also suggests potential directions for future research in the field.

59 citations


Journal ArticleDOI
TL;DR: An adaptive heuristics energy-aware algorithm is proposed, which creates an upper CPU utilization threshold using recent CPU utilization history to detect overloaded hosts and dynamic VM selection algorithms to consolidate the VMs from overloaded or underloaded host.
Abstract: Mobile cloud computing (MCC) provides various cloud computing services to mobile users. The rapid growth of MCC users requires large-scale MCC data centers to provide them with data processing and storage services. The growth of these data centers directly impacts electrical energy consumption, which affects businesses as well as the environment through carbon dioxide (CO2) emissions. Moreover, large amount of energy is wasted to maintain the servers running during low workload. To reduce the energy consumption of mobile cloud data centers, energy-aware host overload detection algorithm and virtual machines (VMs) selection algorithms for VM consolidation are required during detected host underload and overload. After allocating resources to all VMs, underloaded hosts are required to assume energy-saving mode in order to minimize power consumption. To address this issue, we proposed an adaptive heuristics energy-aware algorithm, which creates an upper CPU utilization threshold using recent CPU utilization history to detect overloaded hosts and dynamic VM selection algorithms to consolidate the VMs from overloaded or underloaded host. The goal is to minimize total energy consumption and maximize Quality of Service, including the reduction of service level agreement (SLA) violations. CloudSim simulator is used to validate the algorithm and simulations are conducted on real workload traces in 10 different days, as provided by PlanetLab.

Journal ArticleDOI
TL;DR: This paper proposes a dual key-based activation scheme for LoRaWAN that resolves the problem of key updates not being fully supported and facilitates each layer in generating its own session key directly, which ensures the independence of all layers.
Abstract: With the advent of the Internet of Things (IoT) era, we are experiencing rapid technological progress. Billions of devices are connected to each other, and our homes, cities, hospitals, and schools are getting smarter and smarter. However, to realize the IoT, several challenging issues such as connecting resource-constrained devices to the Internet must be resolved. Recently introduced Low Power Wide Area Network (LPWAN) technologies have been devised to resolve this issue. Among many LPWAN candidates, the Long Range (LoRa) is one of the most promising technologies. The Long Range Wide Area Network (LoRaWAN) is a communication protocol for LoRa that provides basic security mechanisms. However, some security loopholes exist in LoRaWAN’s key update and session key generation. In this paper, we propose a dual key-based activation scheme for LoRaWAN. It resolves the problem of key updates not being fully supported. In addition, our scheme facilitates each layer in generating its own session key directly, which ensures the independence of all layers. Real-world experimental results compared with the original scheme show that the proposed scheme is totally feasible in terms of delay and battery consumption.

Journal ArticleDOI
TL;DR: This paper presents the diverse hardware used in several IoT layers such as sensors, embedded processors, wireless transceivers, internet gateway, and application management cloud server and presents a broad application-driven modular architecture which can be easily customized for rapid deployment.
Abstract: Building upon the advancements in the recent years, a new paradigm in technology has emerged in Internet of Things (IoT). IoT has allowed for communication with the surrounding environment through a multitude of sensors and actuators, yet operating on limited energy. Several researchers have presented IoT architectures for respective applications, often challenged by requiring major updates for adoption to a different application. Further, this comes with several uncertainties such as type of computational device required at the edge, mode of wireless connectivity required, methods to obtain power efficiency, and not ensuring rapid deployment. This paper starts with providing a horizontal overview of each layer in IoT architecture and options for different applications. Then it presents a broad application-driven modular architecture, which can be easily customized for rapid deployment. This paper presents the diverse hardware used in several IoT layers such as sensors, embedded processors, wireless transceivers, internet gateway, and application management cloud server. Later, this paper presents implementation results for diverse applications including healthcare, structural health monitoring, agriculture, and indoor tour guide systems. It is hoped that this research will assist the potential user to easily choose IoT hardware and software as it pertains to their respective needs.

Journal ArticleDOI
TL;DR: A tutorial review on the important issues related to HBC data transmission such as signal propagation model, channel characteristics, communication performance, and experimental considerations is conducted.
Abstract: Human body communication (HBC), which uses the human body tissue as the transmission medium to transmit health informatics, serves as a promising physical layer solution for the body area network (BAN). The human centric nature of HBC offers an innovative method to transfer the healthcare data, whose transmission requires low interference and reliable data link. Therefore, the deployment of HBC system obtaining good communication performance is required. In this regard, a tutorial review on the important issues related to HBC data transmission such as signal propagation model, channel characteristics, communication performance, and experimental considerations is conducted. In this work, the development of HBC and its first attempts are firstly reviewed. Then a survey on the signal propagation models is introduced. Based on these models, the channel characteristics are summarized; the communication performance and selection of transmission parameters are also investigated. Moreover, the experimental issues, such as electrodes and grounding strategies, are also discussed. Finally, the recommended future studies are provided.

Journal ArticleDOI
TL;DR: This study proposes a new approach for mass customization with the integration of smart retail and smart production, and constitutes the infrastructure that enables a production system to autonomously perform all stages from order to delivery.
Abstract: Smart city is a city which is designed to meet the people’s demands. In addition to use of sources efficiently, trends of people are also a need that smart city should meet. Buying personalized products in a cheap and fast way is a demand of people of today. Mass customization, which is defined as the personalization of products, achieves making the tailor-made products cheaper. In this study, we propose a new approach for mass customization with the integration of smart retail and smart production. With removing the operators and actualizing the progress autonomously, it is aimed to reduce the waiting time of customers. Because less waiting time means that there are more mass-customization customers, and this is expected to increase the popularity of mass customization. Thus, reducing wastes and increasing productivity are aimed. This study also constitutes the infrastructure that enables a production system to autonomously perform all stages from order to delivery. With the given scenarios, challenges and advantages of desired approach are discussed.

Journal ArticleDOI
TL;DR: This paper introduces a hierarchical distributed approach for home care systems based on a new paradigm known as Internet of Things (IoT), supported by a three-level data management model composed of dew computing, fog computing, and cloud computing for efficient data flow in IoT based home care system.
Abstract: The increasing average age of the population in most industrialized countries imposes a necessity for developing advanced and practical services using state-of-the-art technologies, dedicated to personal living spaces. In this paper, we introduce a hierarchical distributed approach for home care systems based on a new paradigm known as Internet of Things (IoT). The proposed generic framework is supported by a three-level data management model composed of dew computing, fog computing, and cloud computing for efficient data flow in IoT based home care systems. We examine the proposed model through a real case scenario of an early fire detection system using a distributed fuzzy logic approach. The obtained results prove that such implementation of dew and fog computing provides high accuracy in fire detection IoT systems, while achieving minimum data latency.

Journal ArticleDOI
TL;DR: This review paper presents within a common framework the mobile station positioning methods applied in 2G, 3G, and 4G cellular networks, as well as the structure of the related 3GPP technical specifications.
Abstract: This review paper presents within a common framework the mobile station positioning methods applied in 2G, 3G, and 4G cellular networks, as well as the structure of the related 3GPP technical specifications. The evolution path through the generations is explored in three steps at each level: first, the new network elements supporting localization features are introduced; then, the standard localization methods are described; finally, the protocols providing specific support to mobile station positioning are studied. To allow a better understanding, this paper also brings a brief review of the cellular networks evolution paths.

Journal ArticleDOI
TL;DR: The results clearly reveal the existence of two propagation zones with very distinct channel characteristics, useful for the modeling of low altitude air-to-ground (AG) propagation channels and the performance analysis of UAV-enabling AG communication systems, such as the channel capacity and the throughput.
Abstract: Small- and medium-sized unmanned aerial vehicles (UAVs) can fly for a short distance ( factor model is proposed. The results clearly reveal the existence of two propagation zones with very distinct channel characteristics. The breakpoint indicates the height where the condition of the channel changes rapidly. At low altitudes, the obstacles generate a large amount of multipath and the propagation is greatly affected, while at higher altitudes the influence mitigates. Our results are useful for the modeling of low altitude air-to-ground (AG) propagation channels and the performance analysis of UAV-enabling AG communication systems, such as the channel capacity and the throughput.

Journal ArticleDOI
TL;DR: Results show that Facebook and Twitter compressed HD videos more as compared to other clouds, however, Facebook gives a better quality of compressed videos compared to Twitter, and users assigned low ratings for Twitter for online video quality compared to Tumblr that provided high-quality online play of videos with less compression.
Abstract: Video sharing on social clouds is popular among the users around the world. High-Definition (HD) videos have big file size so the storing in cloud storage and streaming of videos with high quality from cloud to the client are a big problem for service providers. Social clouds compress the videos to save storage and stream over slow networks to provide quality of service (QoS). Compression of video decreases the quality compared to original video and parameters are changed during the online play as well as after download. Degradation of video quality due to compression decreases the quality of experience (QoE) level of end users. To assess the QoE of video compression, we conducted subjective (QoE) experiments by uploading, sharing, and playing videos from social clouds. Three popular social clouds, Facebook, Tumblr, and Twitter, were selected to upload and play videos online for users. The QoE was recorded by using questionnaire given to users to provide their experience about the video quality they perceive. Results show that Facebook and Twitter compressed HD videos more as compared to other clouds. However, Facebook gives a better quality of compressed videos compared to Twitter. Therefore, users assigned low ratings for Twitter for online video quality compared to Tumblr that provided high-quality online play of videos with less compression.

Journal ArticleDOI
TL;DR: This paper intends to provide a seminal insight into the important issue of adaptive traffic light based on FCD by presenting ideas that can be useful to researchers and engineers in the long-term task of developing new algorithms and systems that may revolutionize the way traffic lights are regulated.
Abstract: This paper presents a simple concept which has not been, up to now, thoroughly explored in scientific research: the use of information coming from the network of Internet connected mobile devices (on vehicles) to regulate traffic light systems. Three large-scale changes are going to shape the future of transportation and could lead to the regulation of traffic signal system based on floating car data (FCD): (i) the implementation of Internet connected cars with global navigation satellite (GNSS) system receivers and the autonomous car revolution; (ii) the spreading of mobile cooperative Web 2.0 and the extension to connected vehicles; (iii) an increasing need for sustainability of transportation in terms of energy efficiency, traffic safety, and environmental issues. Up to now, the concept of floating car data (FCD) has only been extensively used to obtain traffic information and estimate traffic parameters. Traffic lights regulation based on FCD technology has not been fully researched since the implementation requires new ideas and algorithms. This paper intends to provide a seminal insight into the important issue of adaptive traffic light based on FCD by presenting ideas that can be useful to researchers and engineers in the long-term task of developing new algorithms and systems that may revolutionize the way traffic lights are regulated.

Journal ArticleDOI
TL;DR: Four pairs of microstrip MIMO conformal antennas of 35 GHz with Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe.
Abstract: With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output) technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.

Journal ArticleDOI
TL;DR: A method is proposed that analyzes the variable impact in random forest algorithm to clarify which variable affects classification accuracy the most and proves its suitability for data interpretation in black box model like a random forest so that the algorithm is applicable in mobile cloud computing environment.
Abstract: Recently, the importance of mobile cloud computing has increased. Mobile devices can collect personal data from various sensors within a shorter period of time and sensor-based data consists of valuable information from users. Advanced computation power and data analysis technology based on cloud computing provide an opportunity to classify massive sensor data into given labels. Random forest algorithm is known as black box model which is hardly able to interpret the hidden process inside. In this paper, we propose a method that analyzes the variable impact in random forest algorithm to clarify which variable affects classification accuracy the most. We apply Shapley Value with random forest to analyze the variable impact. Under the assumption that every variable cooperates as players in the cooperative game situation, Shapley Value fairly distributes the payoff of variables. Our proposed method calculates the relative contributions of the variables within its classification process. In this paper, we analyze the influence of variables and list the priority of variables that affect classification accuracy result. Our proposed method proves its suitability for data interpretation in black box model like a random forest so that the algorithm is applicable in mobile cloud computing environment.

Journal ArticleDOI
TL;DR: An Advanced Hybrid Intrusion Detection System (AHIDS) that automatically detects the WSNs attacks is proposed that makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes.
Abstract: In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS) that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack). For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

Journal ArticleDOI
TL;DR: A lightweight data aggregation scheme against internal attackers in the smart grid environment using Elliptic Curve Cryptography (ECC) is constructed, which shows that it is provably secure and can provide confidentiality, authentication, and integrity.
Abstract: Recent advances of Internet and microelectronics technologies have led to the concept of smart grid which has been a widespread concern for industry, governments, and academia. The openness of communications in the smart grid environment makes the system vulnerable to different types of attacks. The implementation of secure communication and the protection of consumers’ privacy have become challenging issues. The data aggregation scheme is an important technique for preserving consumers’ privacy because it can stop the leakage of a specific consumer’s data. To satisfy the security requirements of practical applications, a lot of data aggregation schemes were presented over the last several years. However, most of them suffer from security weaknesses or have poor performances. To reduce computation cost and achieve better security, we construct a lightweight data aggregation scheme against internal attackers in the smart grid environment using Elliptic Curve Cryptography (ECC). Security analysis of our proposed approach shows that it is provably secure and can provide confidentiality, authentication, and integrity. Performance analysis of the proposed scheme demonstrates that both computation and communication costs of the proposed scheme are much lower than the three previous schemes. As a result of these aforementioned benefits, the proposed lightweight data aggregation scheme is more practical for deployment in the smart grid environment.

Journal ArticleDOI
TL;DR: This work provides a functional validation of the proposed architecture and introduces how the data it manages can be used by the whole City4Age platform to early identify risks related to MCI/frailty and promptly intervene.
Abstract: The world population will be made up of a growing number of elderly people in the near future. Aged people are characterized by some physical and cognitive diseases, like mild cognitive impairment (MCI) and frailty, that, if not timely diagnosed, could turn into more severe diseases, like Alzheimer disease, thus implying high costs for treatments and cares. Information and Communication Technologies (ICTs) enabling the Internet of Things (IoT) can be adopted to create frameworks for monitoring elderly behavior which, alongside normal clinical procedures, can help geriatricians to early detect behavioral changes related to such pathologies and to provide customized interventions. As part of the City4Age project, this work describes a novel approach for collecting and managing data about elderly behavior during their normal activities. The data capturing layer is an unobtrusive and low-cost sensing infrastructure abstracting the heterogeneity of physical devices, while the data management layer easily manages the huge quantity of sensed data, giving them semantic meaning and fostering data shareability. This work provides a functional validation of the proposed architecture and introduces how the data it manages can be used by the whole City4Age platform to early identify risks related to MCI/frailty and promptly intervene.

Journal ArticleDOI
TL;DR: A thematic review of traffic adaptive Medium Access Control (MAC) protocols in WBANs and a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR), and energy consumption.
Abstract: In Wireless Body Area Networks (WBANs), every healthcare application that is based on physical sensors is responsible for monitoring the vital signs data of patient. WBANs applications consist of heterogeneous and dynamic traffic loads. Routine patient’s observation is described as low-load traffic while an alarming situation that is unpredictable by nature is referred to as high-load traffic. This paper offers a thematic review of traffic adaptive Medium Access Control (MAC) protocols in WBANs. First, we have categorized them based on their goals, methods, and metrics of evaluation. The Zigbee standard IEEE 802.15.4 and the baseline MAC IEEE 802.15.6 are also reviewed in terms of traffic adaptive approaches. Furthermore, a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR), and energy consumption. The literature shows that no review work has been done on traffic adaptive MAC protocols in WBANs. This review work, therefore, could add enhancement to traffic adaptive MAC protocols and will stimulate a better way of solving the traffic adaptivity problem.

Journal ArticleDOI
TL;DR: WAVE compliant enhancement to the existing IEEE 802.11p protocol is presented which targets prioritized delivery of safety messages while simultaneously provisioning the dissemination of nonsafety messages and provides significant enhancement and stability of the clustered topology in vehicular ad hoc network over existing standard and other protocols with similar applications.
Abstract: Majority of research contributions in wireless access in vehicular environment (WAVE)/IEEE 802.11p standard focus on life critical safety-related applications. These applications require regular status update of vehicle’s position referred to as beaconing. Periodic beaconing in vehicle to vehicle communication leads to severe network congestion in the communication channel. The condition worsens under high vehicular density where it impacts reliability and upper bound latency of safety messages. In this paper, WAVE compliant enhancement to the existing IEEE 802.11p protocol is presented which targets prioritized delivery of safety messages while simultaneously provisioning the dissemination of nonsafety messages. Proposed scheme relies on dynamic generation of beacons to mitigate channel congestion and inefficient bandwidth utilization by reducing transmission frequency of beacons. Through the use of clustering mechanism, different beaconing frequencies and different data transmission rates are assigned to prioritize vehicular mobility. Through extensive simulation results, the performance of the proposed approach is evaluated in terms of a wide range of quality of service (QoS) parameters for two different transmission ranges. Results show that the proposed protocol provides significant enhancement and stability of the clustered topology in vehicular ad hoc network over existing standard and other protocols with similar applications.

Journal ArticleDOI
TL;DR: The proposed algorithm is called bee DSR (BEEDSR), which is superior in performance than other protocols in terms of energy conservation and delay degradation relating to node speed and packet size.
Abstract: A mobile ad hoc network (MANET) is a collection of mobile nodes that dynamically form a temporary network without using any existing network infrastructure. MANET selects a path with minimal number of intermediate nodes to reach the destination node. As the distance between each node increases, the quantity of transmission power increases. The power level of nodes affects the simplicity with which a route is constituted between a couple of nodes. This study utilizes the swarm intelligence technique through the artificial bee colony (ABC) algorithm to optimize the energy consumption in a dynamic source routing (DSR) protocol in MANET. The proposed algorithm is called bee DSR (BEEDSR). The ABC algorithm is used to identify the optimal path from the source to the destination to overcome energy problems. The performance of the BEEDSR algorithm is compared with DSR and bee-inspired protocols (BeeIP). The comparison was conducted based on average energy consumption, average throughput, average end-to-end delay, routing overhead, and packet delivery ratio performance metrics, varying the node speed and packet size. The BEEDSR algorithm is superior in performance than other protocols in terms of energy conservation and delay degradation relating to node speed and packet size.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a secure and privacy-aware fair billing framework for online electric vehicles (OLEV) on the move through the charging plates installed under the road, which can eliminate the security and privacy challenges in the deployment of power transfer technology to the OLEVs.
Abstract: Recently an online electric vehicle (OLEV) concept has been introduced, where vehicles are propelled by the wirelessly transmitted electrical power from the infrastructure installed under the road while moving. The absence of secure-and-fair billing is one of the main hurdles to widely adopt this promising technology. This paper introduces a new secure and privacy-aware fair billing framework for OLEV on the move through the charging plates installed under the road. We first propose two extreme lightweight mutual authentication mechanisms, a direct authentication and a hash chain-based authentication between vehicles and the charging plates that can be used for different vehicular speeds on the road. Second, we propose a secure and privacy-aware wireless power transfer on move for the vehicles with bidirectional auditability guarantee by leveraging game theoretic approach. Each charging plate transfers a fixed amount of energy to the vehicle and bills the vehicle in a privacy-aware way accordingly. Our protocol guarantees secure, privacy-aware, and fair billing mechanism for the OLEVs while receiving electric power from the infrastructure installed under the road. Moreover, our proposed framework can play a vital role in eliminating the security and privacy challenges in the deployment of power transfer technology to the OLEVs.

Journal ArticleDOI
TL;DR: This work designs a precise sensing effect function with a local constraint and aims to maximize this sensing effect to address crowdsensing task assignment and designs an optimal algorithm based on particle swarm optimization to solve this problem.
Abstract: Cognitive radio technology allows unlicensed users to utilize licensed wireless spectrum if the wireless spectrum is unused by licensed users. Therefore, spectrum sensing should be carried out before unlicensed users access the wireless spectrum. Since mobile terminals such as smartphones are more and more intelligent, they can sense the wireless spectrum. The method that spectrum sensing task is assigned to mobile intelligent terminals is called crowdsourcing. For a large-scale region, we propose the crowdsourcing paradigm to assign mobile users the spectrum sensing task. The sensing task assignment is influenced by some factors including remaining energy, locations, and costs of mobile terminals. Considering these constraints, we design a precise sensing effect function with a local constraint and aim to maximize this sensing effect to address crowdsensing task assignment. The problem of crowdsensing task assignment is difficult to solve since we prove that it is NP-hard. We design an optimal algorithm based on particle swarm optimization to solve this problem. Simulation results show our algorithm achieves higher performance than the other algorithms.