scispace - formally typeset
Search or ask a question
JournalISSN: 1022-0038

Wireless Networks 

Springer Science+Business Media
About: Wireless Networks is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Wireless sensor network & Wireless network. It has an ISSN identifier of 1022-0038. Over the lifetime, 3435 publications have been published receiving 102466 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents LANDMARC, a location sensing prototype system that uses Radio Frequency Identification (RFID) technology for locating objects inside buildings and demonstrates that active RFID is a viable and cost-effective candidate for indoor location sensing.
Abstract: Growing convergence among mobile computing devices and embedded technology sparks the development and deployment of "context-aware" applications, where location is the most essential context. In this paper we present LANDMARC, a location sensing prototype system that uses Radio Frequency Identification (RFID) technology for locating objects inside buildings. The major advantage of LANDMARC is that it improves the overall accuracy of locating objects by utilizing the concept of reference tags. Based on experimental analysis, we demonstrate that active RFID is a viable and cost-effective candidate for indoor location sensing. Although RFID is not designed for indoor location sensing, we point out three major features that should be added to make RFID technologies competitive in this new and growing market.

2,615 citations

Journal ArticleDOI
TL;DR: A suite of security protocols optimized for sensor networks: SPINS, which includes SNEP and μTESLA and shows that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of the network.
Abstract: Wireless sensor networks will be widely deployed in the near future. While much research has focused on making these networks feasible and useful, security has received little attention. We present a suite of security protocols optimized for sensor networks: SPINS. SPINS has two secure building blocks: SNEP and μTESLA. SNEP includes: data confidentiality, two-party data authentication, and evidence of data freshness. μTESLA provides authenticated broadcast for severely resource-constrained environments. We implemented the above protocols, and show that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.

2,298 citations

Journal ArticleDOI
TL;DR: The Cyberguide project is presented, in which the authors are building prototypes of a mobile context‐aware tour guide that is used to provide more of the kind of services that they come to expect from a real tour guide.
Abstract: Future computing environments will free the user from the constraints of the desktop. Applications for a mobile environment should take advantage of contextual information, such as position, to offer greater services to the user. In this paper, we present the Cyberguide project, in which we are building prototypes of a mobile context-aware tour guide. Knowledge of the user's current location, as well as a history of past locations, are used to provide more of the kind of services that we come to expect from a real tour guide. We describe the architecture and features of a variety of Cyberguide prototypes developed for indoor and outdoor use on a number of different hand-held platforms. We also discuss the general research issues that have emerged in our context-aware applications development in a mobile environment.

1,659 citations

Journal ArticleDOI
TL;DR: A multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile information systems is presented that supports multimedia traffic and relies on both time division and code division access schemes.
Abstract: A multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile information systems is presented. The proposed network supports multimedia traffic and relies on both time division and code division access schemes. This radio network is not supported by a wired infrastructure as conventional cellular systems are. Thus, it can be instantly deployed in areas with no infrastructure at all. By using a distributed clustering algorithm, nodes are organized into clusters. The clusterheads act as local coordinators to resolve channel scheduling, perform power measurement/control, maintain time division frame synchronization, and enhance the spatial reuse of time slots and codes. Moreover, to guarantee bandwidth for real time traffic, the architecture supports virtual circuits and allocates bandwidth to circuits at call setup time. The network is scalable to large numbers of nodes, and can handle mobility. Simulation experiments evaluate the performance of the proposed scheme in static and mobile environments.

1,610 citations

Journal ArticleDOI
TL;DR: A randomized algorithm where coordinators rotate with time is given, demonstrating how localized node decisions lead to a connected, capacity-preserving global topology.
Abstract: This paper presents Span, a power saving technique for multi-hop ad hoc wireless networks that reduces energy consumption without significantly diminishing the capacity or connectivity of the network. Span builds on the observation that when a region of a sharedchannel wireless network has a sufficient density of nodes, only a small number of them need be on at any time to forward traffic for active connections. Span is a distributed, randomized algorithm where nodes make local decisions on whether to sleep, or to join a forwarding backbone as a coordinator. Each node bases its decision on an estimate of how many of its neighbors will benefit from it being awake, and the amount of energy available to it. We give a randomized algorithm where coordinators rotate with time, demonstrating how localized node decisions lead to a connected, capacity-preserving global topology. Improvement in system lifetime due to Span increases as the ratio of idle-to-sleep energy consumption increases. Our simulations show that with a practical energy model, system lifetime of an 802.11 network in power saving mode with Span is a factor of two better than without. Additionally, Span also improves communication latency and capacity.

1,479 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202310
20229
2021432
2020439
2019367
2018235