scispace - formally typeset
Search or ask a question

Showing papers in "World Journal of Microbiology & Biotechnology in 2009"


Journal ArticleDOI
TL;DR: Actinomycete isolates obtained from 16 medicinal plant rhizosphere soils had high ability to produced antifungal compounds, IAA and siderophores, and Streptomyces CMU-PA101 and StrePTomycesCMU-SK126 had high able to produced anti-fungal substances, including indole-3-acetic acid (IAA) and sidersophores.
Abstract: A total of 445 actinomycete isolates were obtained from 16 medicinal plant rhizosphere soils. Morphological and chemotaxonomic studies indicated that 89% of the isolates belonged to the genus Streptomyces, 11% were non-Streptomycetes: Actinomadura sp., Microbispora sp., Micromonospora sp., Nocardia sp, Nonomurea sp. and three isolates were unclassified. The highest number and diversity of actinomycetes were isolated from Curcuma mangga rhizosphere soil. Twenty-three Streptomyces isolates showed activity against at least one of the five phytopathogenic fungi: Alternaria brassicicola, Collectotrichum gloeosporioides, Fusarium oxysporum, Penicillium digitatum and Sclerotiumrolfsii. Thirty-six actinomycete isolates showed abilities to produce indole-3-acetic acid (IAA) and 75 isolates produced siderophores on chrome azurol S (CAS) agar. Streptomyces CMU-PA101 and Streptomyces CMU-SK126 had high ability to produced antifungal compounds, IAA and siderophores.

331 citations


Journal ArticleDOI
TL;DR: The results of diversity, antimicrobial activity and enzymes production have increased the scope of finding industrially important marine actinomycetes from the Bay of Bengal and these organisms could be vital sources for the discovery of Industrially useful molecules/enzymes.
Abstract: A total of 288 marine samples were collected from different locations of the Bay of Bengal starting from Pulicat lake to Kanyakumari, and 208 isolates of marine actinomycetes were isolated using starch casein agar medium. The growth pattern, mycelial coloration, production of exopolysaccharides and diffusible pigment and abundance of Streptomyces spp. were documented. Among marine actinomycetes, Streptomyces spp. were present in large proportion (88%). Among 208 marine actinomycetes, 111 isolates exhibited antimicrobial activity against human pathogens, and 151 showed antifungal activity against two plant pathogens. Among 208 isolates, 183, 157, 116, 72 and 68 isolates produced lipase, caseinase, gelatinase, cellulase and amylase, respectively. The results of diversity, antimicrobial activity and enzymes production have increased the scope of finding industrially important marine actinomycetes from the Bay of Bengal and these organisms could be vital sources for the discovery of industrially useful molecules/enzymes.

194 citations


Journal ArticleDOI
TL;DR: The composition of the essential oils and methanolic extracts of two cultivated mint species (M longifolia and M pulegium), as well as the in vitro antimicrobial and antioxidant activities, were compared in this paper.
Abstract: The composition of the essential oils and methanolic extracts of two cultivated mint species (M longifolia and M pulegium), as well as the in vitro antimicrobial and antioxidant activities of the essential oil and methanol extract of Mentha longifolia and Mentha pulegium were compared GC-MS analysis of the essential oil identified 41 compounds constituting 9666 and 9613% of the total oil from M longifolia and M pulegium, respectively The later oils were rich on pulegone (4715 and 6111%, respectively) Moreover, 1,8 cineole (1154%), menthone (107%), α-pinene (357%), α-terpineol (317%) and d-cadinene (353%) were only present in M longifolia oil, while isomenthone (1702%), and piperitone (263%), were characteristic of M pulegium oil Shoot extract of the two species showed significantly different contents in total polyphenols (891 and 3741 mg GAE/g DW), flavonoids (6393 and 3383 mg CE/g DW) and tannins (147 and 307 mg CE/g DW), respectively in M longifolia and M pulegium The essential oils showed strong antimicrobial activity against all 16 microorganisms tested, whereas the methanol extracts were inactive Moreover, the essential oils showed higher antioxidant activity than the methanolic extracts against the DPPH and superoxide radical scavenging In fact, antioxidant activities of the oils were the same for both M longifolia and M pulegium against DPPH (IC50 = 9 and 10 μg/ml, respectively) and 2-fold and 4-fold higher than shoot extracts (IC50 = 20 and 48 μg/ml, respectively) Moreover, both oils showed the same antioxidative abilities as compared to the positive control (butylated hydroxytoluene) In the same way, the capacity to inhibit superoxide anion was very significant for the two oils (01 μg/ml for M longifolia and 011 μg/ml for M pulegium)

182 citations


Journal ArticleDOI
TL;DR: The plant growth promotion showed to be correlated to IAA production and phosphate solubilization and suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.
Abstract: Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.

172 citations


Journal ArticleDOI
TL;DR: Pseudomonas is the major antagonistic endophytic bacteria from eggplants which have the potential to be used as a biocontrol agent as well as plant growth-promoting rhizobacteria.
Abstract: Endophytic bacteria of eggplant, cucumber and groundnut were isolated from different locations of Goa, India. Based on in vitro screening, 28 bacterial isolates which effectively inhibited Ralstonia solanacearum, a bacterial wilt pathogen of the eggplant were characterized and identified. More than 50% of these isolates were Pseudomonas fluorescens in which a vast degree of variability was found to exist when biochemical characteristics were compared. In greenhouse experiments, the plants treated with Pseudomonas isolates (EB9, EB67), Enterobacter isolates (EB44, EB89) and Bacillus isolates (EC4, EC13) reduced the wilt incidence by more than 70%. All the selected isolates reduced damping off by more than 50% and improved the growth of seedlings in the nursery stage. Most of the selected antagonists produced an antibiotic, DAPG, which inhibited R. solanacearum under in vitro conditions and might have been responsible for reduced wilt incidence under in vivo conditions. Also production of siderophores and IAA in the culture medium by the antagonists was recorded, which could be involved in biocontrol and growth promotion in crop plants. From our study we conclude that Pseudomonas is the major antagonistic endophytic bacteria from eggplants which have the potential to be used as a biocontrol agent as well as plant growth-promoting rhizobacteria. Large scale field evaluation and detailed knowledge on antagonistic mechanism could provide an effective biocontrol solution for bacterial wilt of solanaceous crops.

152 citations


Journal ArticleDOI
TL;DR: In this article, Shingomonas paucimobilis was isolated from the soil sample collected from contaminated sites of textile industry located in KsarHellal, Tunisia, and it was able to decolorize Malachite Green (MG) dye (50 mg/l) within 4 h under shaking condition (pH 9 and temperature 25°C).
Abstract: Triphenylmethane dyes belong to the most important group of synthetic colorants and are used extensively in the textile industries for dying cotton, wool, silk, nylon, etc. They are generally considered as the xenobiotic compounds, which are very recalcitrant to biodegradation. Sphingomonas paucimobilis, was isolated from the soil sample collected from contaminated sites of textile industry located in KsarHellal, Tunisia, and it was able to decolorize Malachite Green (MG) dye (50 mg/l) within 4 h under shaking condition (pH 9 and temperature 25°C). The effect of inoculum size, dye concentration, temperature and initial pH of the solution were studied. The results obtained from the batch experiments revealed the ability of the tested bacteria to remove dye. UV-Vis spectroscopy and FTIR analysis of samples before and after decolorization confirmed the ability of the tested strain to decolorize MG. In addition, the phytotoxicity study revealed the degradation of MG into non-toxic product by S. paucimobilis.

151 citations


Journal ArticleDOI
TL;DR: Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils as mentioned in this paper.
Abstract: Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C and pH 2.0.

137 citations


Journal ArticleDOI
TL;DR: Gibberellin production and plant growth-promoting ability of genus Cladosporium are reported for the first time in the present study.
Abstract: Endophytic fungi are plant symbionts that produce a variety of beneficial metabolites for plant growth and protection against herbivory and pathogens Fourteen fungal samples were isolated from the roots of soybean cultivar Daemangkong and screened on waito-c rice for their plant growth-promoting capacity Twelve of the fungal isolates promoted plant growth, while two inhibited it The fungal isolate DK-1-1 induced maximum plant growth in both waito-c rice and soybean The plant growth promotion capacity of DK-1-1 was higher than the wild type Gibberella fujikuroi Gibberellin (GA) analysis of culture filtrate of DK-1-1 showed the presence of higher amounts of bioactive GA3, GA4, and GA7 (662, 21 and 126 ng/mL, respectively) along with physiologically inactive GA5, GA15, GA19, and GA24 Phylogenetic analysis of 18S rDNA sequence identified the fungal isolate as a new strain of Cladosporium sphaerospermum Gibberellin production and plant growth-promoting ability of genus Cladosporium are reported for the first time in the present study

134 citations


Journal ArticleDOI
TL;DR: This review considers the developing field of antimicrobial peptide applications in various agricultural activities and indicates a promising future for extensive application of these peptides.
Abstract: Antimicrobial peptides have captured the attention of researchers in recent years because of their efficiency in fighting against pathogens. These peptides are found in nature and have been isolated from a wide range of organisms. Furthermore, analogs or synthetic derivatives have successfully been developed on the basis of natural peptide patterns. Long use of pesticides and antibiotics has led to development of resistance among pathogens and other pests as well as increase of environmental and health risks. Antimicrobial peptides are under consideration as new substitutes for conventional pesticides and antibiotics. Many plants and animals have been manipulated with antimicrobial peptide-encoding genes and several pesticides and drugs have been produced based on these peptides. Such strategies and products may still have a long way to go before being confirmed by regulatory bodies and others need to surmount technical problems before being accepted as applicable ones. In spite of these facts, several cases of successful use of antimicrobial peptides in agriculture and food industry indicate a promising future for extensive application of these peptides. In this review, we consider the developing field of antimicrobial peptide applications in various agricultural activities.

133 citations


Journal ArticleDOI
TL;DR: The effect of host on metal ions, cations and anions which influence activity of the enzyme in sequestration studies suggests that mercury and HCO3− ion almost completely inhibit the enzyme whereas sulfate ion and zinc enhances carbonic anhydrase activity.
Abstract: The increase in the atmospheric concentrations of one of the vital green house gasses, carbon dioxide, due to anthropogenic interventions has led to several undesirable consequences such as global warming and related changes. In the global effort to combat the predicted disaster, several CO2 capture and storage technologies are being deliberated. One of the most promising biological carbon dioxide sequestration technologies is the enzyme catalyzed carbon dioxide sequestration into bicarbonates which was endeavored in this study with a purified C. freundii SW3 β-carbonic anhydrase (CA). An extensive screening process for biological sequestration using CA has been defined. Six bacteria with high CA activity were screened out of 102 colonies based on plate assay and presence of CA in these bacteria was further emphasized by activity staining and Western blot. The identity of selected bacteria was confirmed by 16S rDNA analysis. CA was purified to homogeneity from C. freundii SW3 by subsequent gel filtration and ion exchange chromatography which resulted in a 24 kDa polypeptide and this is in accordance with the Western blot results. The effect of host on metal ions, cations and anions which influence activity of the enzyme in sequestration studies suggests that mercury and HCO3 − ion almost completely inhibit the enzyme whereas sulfate ion and zinc enhances carbonic anhydrase activity. Calcium carbonate deposition was observed in calcium chloride solution saturated with carbon dioxide catalyzed by purified enzyme and whereas a sharp decrease in calcium carbonate formation has been noted in purified enzyme samples inhibited by EDTA and acetazolamide.

131 citations


Journal ArticleDOI
TL;DR: The study demonstrated antagonistic activity towards the target pathogens discussed and are thus potential agents for biocontrol of soil borne diseases of rice in Thailand and other countries.
Abstract: Rice (Oryza sativa) is a staple food in Thailand and, in addition, feeds around one half of the world’s population. Therefore, diseases of rice are of special concern. Rice is destroyed by 2 main pathogens, Fusarium oxysporum and Pyricularia oryzae the causative agents of root rot and blast in rice respectively. These pathogens result in low grain yield in Thailand and other Southeast Asian countries. Soil samples were taken from paddy fields in Northern Thailand and bacteria were isolated using the soil dilution plate method on Nutrient agar. Isolation yielded 216 bacterial isolates which were subsequently tested for their siderophore production and effectiveness in inhibiting mycelial growth in vitro of the rice pathogenic fungi; Alternaria sp., Fusarium oxysporum, Pyricularia oryzae and Sclerotium sp., the causal agent of leaf spot, root rot, blast and stem rot in rice. It was found that 23% of the bacteria isolated produced siderophore on solid plating medium and liquid medium, In dual culture technique, the siderophore producing rhizobacteria showed a strong antagonistic effect against the Alternaria (35.4%), Fusarium oxysporum (37.5%), Pyricularia oryzae (31.2%) and Sclerotium sp. (10.4%) strains tested. Streptomyces sp. strain A 130 and Pseudomonas sp. strain MW 2.6 in particular showed a significant higher antagonistic effect against Alternaria sp. while Ochrobactrum anthropi D 5.2 exhibited a good antagonistic effect against F. oxysporum. Bacillus firmus D 4.1 inhibited P. oryzae and Kocuria rhizophila 4(2.1.1) strongly inhibited Sclerotium sp. P. aureofaciens AR 1 was the best siderophore producer overall and secreted hydroxamate type siderophore. This strain exhibits an in vitro antagonistic effect against Alternaria sp., F. oxysporum and P. oryzae. Siderophore production in this isolate was maximal after 15 days and at an optimal temperature of 30°C, yielding 99.96 ± 0.46 μg ml−1 of siderophore. The most effective isolates were identified by biochemical tests and molecular techniques as members of the Genus Bacillus, Pseudomonas and Kocuria including B. firmus D 4.1, P. aureofaciens AR1 and Kocuria rhizophila 4(2.1.1). The study demonstrated antagonistic activity towards the target pathogens discussed and are thus potential agents for biocontrol of soil borne diseases of rice in Thailand and other countries.

Journal ArticleDOI
TL;DR: Because of the innate potential of phosphate solubilization, production of siderophore, IAA, protease, cellulase and HCN strains reported in this study can be used as biofertilizers as well as biocontrol agents.
Abstract: Of 80 fluorescent pseudomonad strains screened for phosphate solubilization, three strains (BFPB9, FP12 and FP13) showed the ability to solubilize tri-calcium phosphate (Ca3(PO4)2). During mineral phosphate solubilization, decrease of pH in the culture medium due to the production of organic acids by the strains was observed. These phosphate solubilizing strains produced indole-3-acetic acid (IAA) and protease as well as exhibited a broad-spectrum antifungal activity against phytopathogenic fungi. When tested in PCR using the gene-specific primers, strain BFPB9 showed the presence of hcnBC genes that encode hydrogen cyanide. On the basis of phenotypic traits, 16S rRNA sequence homology and subsequent phylogenetic analysis, strains BFPB9, FP12 and FP13 were designated as Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii, respectively. Present investigation reports the phosphate solubilization potential and biocontrol ability of new strains that belong to P. plecoglossicida and P. mosselii. Because of the innate potential of phosphate solubilization, production of siderophore, IAA, protease, cellulase and HCN strains reported in this study can be used as biofertilizers as well as biocontrol agents.

Journal ArticleDOI
TL;DR: A close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism and makes these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.
Abstract: Screening soil samples collected from a diverse range of slightly alkaline soil types, we have isolated 22 competent phosphate solubilizing bacteria (PSB). Three isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 hydrolyzed inorganic and organic phosphate compounds effectively. Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. In general, a close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism. All three PSB were able to withstand temperature as high as 42°C, high concentration of NaCl upto 5% and a wide range of initial pH from 5 to 11 while hydrolyzing phosphate compounds actively. Such criteria make these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.

Journal ArticleDOI
TL;DR: The production of lignocellulolytic enzymes by eleven basidiomycetes species isolated from two ecosystems of Georgia was investigated for the first time under submerged (SF) and solid-state fermentation (SSF) of lignecellulosic by-products.
Abstract: The production of lignocellulolytic enzymes by eleven basidiomycetes species isolated from two ecosystems of Georgia was investigated for the first time under submerged (SF) and solid-state fermentation (SSF) of lignocellulosic by-products. Notable intergeneric and intrageneric differences were revealed with regard to the extent of hydrolase and oxidase activity. Several fungi produced laccase along with hydrolases in parallel with growth during the trophophase, showing that the synthesis of this enzyme is not connected with secondary metabolism. The lignocellulosic substrate type had the greatest impact on enzyme secretion. Some of the substrates significantly stimulated lignocellulolytic enzyme synthesis without supplementation of the culture medium with specific inducers. Exceptionally high carboxymethyl cellulase (CMCase, 122 U ml(-1)) and xylanase (195 U ml(-1)) activities were revealed in SF of mandarin peelings by Pseudotremella gibbosa IBB 22 and of residue after ethanol production (REP) by Fomes fomentarius IBB 38, respectively. The SSF of REP by T. pubescens IBB 11 ensured the highest level of laccase activity (24,690 U l(-1)), whereas the SSF of wheat bran and SF of mandarin peels provided the highest manganese peroxidase activity (570-620 U l(-1)) of Trichaptum biforme IBB 117. Moreover, the variation of lignocellulosic growth substrate provides an opportunity to obtain enzyme preparations containing different ratios of individual enzymes.

Journal ArticleDOI
TL;DR: In this article, the composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated.
Abstract: Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known. Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further elucidate the fungal ecology in this special habitat as well as developing new approaches for orchid conversations. The composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated. Microscopic imaging, culture-dependant method and molecular phylogeny were used to estimate their entity and diversity. Totally, there were 172 isolates, at least 14 fungal genera and 33 different morphospecies recovered from 288 samples. Ascomycetes, coelomycetes and hyphomycetes were three major fungal groups. There were higher overall colonization and isolation rates of endophytic fungi from leaves than from other tissues. Guignardia mangiferae was the dominant fungal species within leaves; while the endophytic Xylariaceae were frequently observed in all plant tissues; Colletotrichum, Phomopsis and Fusarium were also frequently observed. Phylogenetic analysis based on ITS gene revealed the high diversity of Xylariacea fungi and relatively diverse of non-Xylariacea fungi. Some potentially promising beneficial fungi such as Clonostachys rosea and Trichoderma chlorosporum were found in roots. This is the first report concerning above-ground and below-ground endophytic fungi community of an epiphytic medicinal orchid, suggesting the ubiquitous distribution of non-mycorrhizal fungal endophytes in orchid plants together with heterogeneity and tissue specificity of the endophyte assemblage. Possible physiological functions played by these fungal endophytes and their potential applications are also discussed briefly.

Journal ArticleDOI
TL;DR: In this paper, the authors reported on the isolation and characterization of a resistant bacterial strain, having plant growth promoting properties to improve general growth of plant in chromium-contaminated soil through rhizosphere colonization.
Abstract: This article reports on the isolation and characterization of a Cr(VI) resistant bacterial strain, having plant growth promoting properties to improve general growth of plant in chromium-contaminated soil through rhizosphere colonization. The strain was isolated from the sludge of waste canal carrying industrial effluents. The minimum inhibitory concentration of chromium to this strain was found to be 450 and 400 mM in complex and minimal media, respectively. The strain also showed varied degree of resistance to Cd, Co, As, Ni and Zn. It exhibited potential Cr(VI) reducing ability under aerobic culture conditions, and the factors affecting Cr(VI) reduction by this strain were evaluated. The optimum pH and temperature required to achieve maximum Cr(VI) reduction values were 7 and 35°C, respectively. Higher concentration of Cr(VI) slowed down the reduction, but with longer incubation time it reduced nearly all detectable amount of Cr(VI). The strain showed positive response to IAA production and phosphate solubilization. It promoted the growth of chilli plants in waste-fed soil with or without additional Cr through its establishment in rhizosphere. The successful establishment of KUCr3 in the rhizosphere of chilli plants helped to reduce Cr uptake by the test plant. This strain shows a promise that the multifarious role of this strain would be useful in the Cr-contaminated rhizosphere soil as a good bioremediation and plant growth promoting agent as well. Through biochemical characterization and 16S rDNA sequence analysis, the strain KUCr3, as the name given to it, was identified as a strain of Cellulosimicrobium cellulans.

Journal ArticleDOI
TL;DR: This is the first report of B. megaterium strain producing HV copolymer, without the addition of any precursor in the fermentation medium, and it is found that this strain was capable of producing 2.5% hydroxyvalerateCopolymer from a single carbon substrate, glucose.
Abstract: Bacillus megaterium strain OU303A isolated from municipal sewage sludge was selected for the study of biosynthesis of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-hydroxyvalerate P (HB-co-HV) copolymer. The strain yielded a maximum of 62.43% DCW polymer in the medium containing glycerol as carbon source, which was followed by 58.63% DCW polymer in glucose containing medium. We found that this strain was capable of producing 2.5% hydroxyvalerate copolymer from a single carbon substrate, glucose. The strain showed an increase in the amount of HV monomer content, when the precursor for the copolymer was included in the fermentation medium. The characterization of the biopolymers was carried out using FTIR, GC-MS, H1 NMR and DSC. This is the first report of B. megaterium strain producing HV copolymer, without the addition of any precursor in the fermentation medium.

Journal ArticleDOI
TL;DR: Five isolates of selected LAB can be classified as the best probiotics and were identified as Enterococcus faecalis,Enterococcus durans, Enterococus faecium, Pediococcus pentosaceus, and Enterococcin faecum, respectively.
Abstract: This study was conducted in order to evaluate the probiotic properties of lactic acid bacteria (LAB) isolated from intestinal tract of broilers and Thai indigenous chickens. The major properties, including the gastric juice and bile salts tolerance, starch, protein and lipid digesting capabilities, and the inhibition on certain pathogenic bacteria were investigated. Three-hundred and twenty-two and 226 LAB strains were isolated from ten broilers and eight Thai indigenous chickens, respectively. The gastrointestinal transit tolerance of these 548 isolates was determined by exposing washed cell suspension at 41°C to simulated gastric juice (pH 2.5) containing pepsin (3 mg ml−1), and to simulated small intestinal juice (pH 8.0) in the presence of pancreatin (1 mg ml−1) and 7% fresh chicken bile, mimicking the gastrointestinal environment. The survival of 20 isolates was found after passing through the gastrointestinal conditions. The survival rates of six strains; KT3L20, KT2CR5, KT10L22, KT5S19, KT4S13 and PM1L12 from the sequential study were 43.68, 37.56, 33.84, 32.89, 31.37 and 27.19%, respectively. Twelve isolates exhibited protein digestion on agar plate but no isolates showed the ability to digest starch and lipid. All 20 LAB showed the antimicrobial activity against Salmonella sp., Staphylococcus aureus and Escherichia coli except one strain which did not show the inhibitory activity toward E. coli. Accordingly, five isolates of selected LAB (KT2L24, KT3L20, KT4S13, KT3CE27 and KT8S16) can be classified as the best probiotics and were identified as Enterococcus faecalis, Enterococcus durans, Enterococcus faecium, Pediococcus pentosaceus, and Enterococcus faecium, respectively. The survival rate of microencapsulation of E. durans KT3L20 under simulated small intestine juice after sequential of simulated gastric juice was also investigated. An extrusion technique exhibited a higher survival rate than emulsion technique and free cell, respectively.

Journal ArticleDOI
TL;DR: The results of this study indicate the potential of harnessing endophytic bacteria of wild legumes for improving the nodulation and growth of cultivated legumes and that lower inoculum levels resulted in decreased cell recovery and plant growth performance.
Abstract: Nodulation and the subsequent nitrogen fixation are important factors that determine the productivity of legumes. The beneficial effects of nodulation can be enhanced when rhizobial inoculation is combined with plant-growth-promoting bacteria (PGPB). The PGPB strain Bacillusthuringiensis-KR1, originally isolated from the nodules of Kudzu vine (Puerariathunbergiana), was found to promote plant growth of field pea (Pisumsativum L.) and lentil (Lensculinaris L.) under Jensen’s tube, growth pouch and non-sterile soil, respectively, when co-inoculated with Rhizobiumleguminosarum-PR1. Coinoculation with B. thuringiensis-KR1 (at a cell density of 106 c.f.u. ml−1) provided the highest and most consistent increase in nodule number, shoot weight, root weight, and total biomass, over rhizobial inoculation alone. The enhancement in nodulation due to coinoculation was 84.6 and 73.3% in pea and lentil respectively compared to R. leguminosarum-PR1 treatment alone. The shoot dry-weight gains on coinoculation with variable cell populations of B. thuringiensis-KR1 varied from 1.04 to 1.15 times and 1.03 to 1.06 times in pea and lentil respectively, while root dry weight ratios of coinoculated treatments varied from 0.98 to 1.14 times and 1.08 to 1.33 times in pea and lentil respectively, those of R. leguminosarum-PR1 inoculated treatment at 42 days of plant growth. While cell densities higher than 106 c.f.u. ml−1 had an inhibitory effect on nodulation and plant growth, lower inoculum levels resulted in decreased cell recovery and plant growth performance. The results of this study indicate the potential of harnessing endophytic bacteria of wild legumes for improving the nodulation and growth of cultivated legumes.

Journal ArticleDOI
TL;DR: The laboratory studies proved that bacterial probionts S. phocae and E. faecium isolated from shrimp and brackishwater fish has potential applications for controlling pathogenic vibriosis in shrimp culture.
Abstract: Occurrence of widespread epizootics among larval and cultured shrimp has put on viable preventive approaches such as application of probiotics on a high priority in aquaculture. In the present study, four probiotics bacteria were isolated from marine fish and shrimp intestine based on the antagonistic activity and nonpathogenic to the host. The isolates of probiotics strains Streptococcus phocae PI80, Enterococcus faecium MC13, Lactococcus garvieae LC149, B49 and one commercial probiotics (ECOFORCE) were fed to post larvae of Penaeus monodon obtained from two different hatcheries to analyze the growth and protection against Vibrio harveyi and V. parahaemolyticus. Growth of P. monodon post larvae fed with probiotic strain S. phocae PI80 was significantly (P < 0.001) higher when compared with control and other three strains in both experiments. The treatment of post larvae with B49 reduced the growth as well as Specific growth rate. Among the three probiotic strains S. phocae PI80 and E. faecium MC13 have effectively inhibited the pathogens. In experiment I high survival (92%) were observed in S. phocae PI80 treated post larvae when challenged with Vibrio harveyi followed by E. faecium MC13 (84%), B49 (76%) and ECOFORCE (68%) but PI80 did not protect the post larvae in the same experiment when they were exposed to V. parahaemolyticus. The probiotic isolate of MC13 has protected the post larvae against V. parahaemolyticus when compared to other probiotics and control. Similarly in the second experiment feeding of S. phocae enhanced the survival of larvae when challenged with V.harveyi. The laboratory studies proved that bacterial probionts S. phocae and E. faecium isolated from shrimp and brackishwater fish has potential applications for controlling pathogenic vibriosis in shrimp culture.

Journal ArticleDOI
TL;DR: In this article, an autochthonous bioaugmentation (ABA) method is proposed to overcome the difficulties of biostimulation, which is like a ready-made bio augmentation technology.
Abstract: Bioaugmentation for oil spills is a much more promising technique than is biostimulation. However, the effectiveness of bioaugmentation is variable, because the survival and the xenobiotic-degrading ability of introduced microorganisms are highly dependent on environmental conditions. As an alternative, autochthonous bioaugmentation (ABA) is proposed to overcome these difficulties. The ABA method is like a ready-made bioaugmentation technology. In ABA, microorganisms indigenous to the contaminated site or predicted contamination site that are well-characterized and potentially capable of degrading oils are used, and these microorganisms should be enriched under conditions where bioaugmentation will be conducted. It is possible to obtain information in advance on the chemical and physical characteristics of potential oil spill sites and of oils that might be spilled. The application of ABA in the coastal areas of Hokkaido Prefecture, Japan, is considered here, because Hokkaido is located south of Sakhalin Island, Russia, where development of oil fields is in progress. If oil spills in this region were well characterized in advance, ABA could be a feasible technology in the near future.

Journal ArticleDOI
TL;DR: It is demonstrated here that pre-inoculation of plantlets with these isolates allow them to withstand Botrytis cinerea, indicating the potential of developing effective actinomycetes from Moroccan habitats for the biological control of Botrytic mold.
Abstract: One hundred and forty-two different actinomycete strains were isolated from rhizosphere soil of Vitis vinifera L. sampled from four Moroccan areas. To evaluate the antifungal effect of the different collected actinomycete isolates, five fungi known to be phytopathogens (Pythium ultimum, Fusarium oxyysporum f. sp. albedinis, Sclerotium rolfsii,Verticillium dahliae and Botrytis cinerea) were used. Results showed that 24 isolates had an in vitro inhibitory effect toward at least 4 of the indicator fungi, but only 9 inhibited all these phytopathogens. These nine isolates were subsequently evaluated individually using in vitro grapevine plantlets for their ability to protect against plant gray mold. We demonstrate here that pre-inoculation of plantlets with these isolates allow them to withstand Botrytis cinerea. Six of these strains were shown to belong to the genus Streptomyces and three to the genus Micromonospora. These findings indicate the potential of developing effective actinomycetes from Moroccan habitats for the biological control of Botrytis cinerea.

Journal ArticleDOI
TL;DR: The isolates could exhibit more than two or three plant growth-promoting (PGP) traits, which may promote plant growth directly or indirectly or synergistically, as evidenced by phenotypic biochemical test and quantitative assay using spectrophotometry.
Abstract: Plant growth-promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. A total of 216 phosphate-solubilizing bacterial isolates were isolated from different rice rhizospheric soil in Northern Thailand. These isolate were screened in vitro for their plant growth-promoting activities such as solubilization of inorganic phosphate, ammonia (NH3), catalase and cell wall-degrading enzyme activity. It was found that 100% solubilized inorganic phosphate, 77.77% produced NH3 and most of the isolates were positive for catalase. In addition, some strains also produced cell wall-degrading enzymes such as protease (7%), chitinase (1%), cellulase (3%) and β-glucanase (3%), as evidenced by phenotypic biochemical test and quantitative assay using spectrophotometry. The isolates could exhibit more than two or three plant growth-promoting (PGP) traits, which may promote plant growth directly or indirectly or synergistically. Part of this study focused on the effect of NaCl, temperature, and pH on a specific the bacterial isolate Acinetobacter CR 1.8. Strain CR 1.8 was able to grow on up to 25% NaCl, between 25 and 55°C, and at pH 5–9. Maximum solubilization of tricalcium phosphate and aluminium phosphate was obtained at neutral pH, and 37°C. Strain CR 1.8 had protease activity but no cellulase, β-glucanase and cellulase activities.

Journal ArticleDOI
TL;DR: The present article aimed to cover comprehensively the different aspects of rumen methanogenesis such as the phylogeny of methanogens, their microbial ecology, factors affecting methane emission, mitigation strategies and need for further study.
Abstract: The rumen is a highly diverse ecosystem comprising different microbial groups including methanogens that consume a considerable part of the ruminant’s nutrient energy in methane production. The consequences of methanogenesis in the rumen may result in the low productivity and possibly will have a negative impact on the sustainability of the ruminant’s production. Since enteric fermentation emission is one of the major sources of methane and is influenced by a number of environmental factors, diet being the most significant one, a number of in vitro and in vivo trials have been conducted with different feed supplements (halogenated methane analogues, bacteriocins, propionate enhancers, acetogens, fats etc.) for mitigating methane emissions directly or indirectly, yet extensive research is required before reaching a realistic solution. Keeping this in view, the present article aimed to cover comprehensively the different aspects of rumen methanogenesis such as the phylogeny of methanogens, their microbial ecology, factors affecting methane emission, mitigation strategies and need for further study.

Journal ArticleDOI
TL;DR: When antibiotic was used in combination with specific bacteriophage a greater destruction of the biofilm structure suggested that the phages could be used successfully along with antibiotic therapy.
Abstract: Despite the efficacy of antibiotics as well as bacteriophages in treatment of bacterial infections, their role in treatment of biofilm associated infections is still under consideration especially in case of older biofilms. Here, efficacy of bacteriophage alone or in combination with amoxicillin, for eradication of biofilm of Klebsiella pneumoniae B5055 has been assessed. Planktonic cells as well as biofilm of K. pneumoniae B5055 grown in 96-well microtiter plates were exposed to bacteriophage and amoxicillin at various Multiplicity of Infections (MoIs) as well as at three different antibiotic concentrations (512, 256 and 128 μg/ml), respectively. After exposure to 256 μg/ml (MIC) of amoxicillin, bacterial load of planktonic culture as well as 1-day-old biofilm was reduced by a log factor of 4.1 ± 0.31 (P = 0.008) and 1.24 ± 0.27 (P < 0.05), respectively but reduction in the bacterial load of mature biofilm (8-day-old) was insignificant (P = 0.23). When 8-day-old biofilm was exposed to higher antibiotic concentration (512 μg/ml) or phage alone (MoI = 0.01) a log reduction of 2.97 ± 0.11 (P = 0.182) and 3.51 ± 0.19 (P = 0.073), respectively was observed. While on exposing to a combination of both the amoxicillin and phage, a significant reduction (P < 0.01) in bacterial load of the biofilm was seen. Hence, when antibiotic was used in combination with specific bacteriophage a greater destruction of the biofilm structure suggested that the phages could be used successfully along with antibiotic therapy. An added advantage of the combination therapy would be its ability to check formation of resistant mutants that otherwise develop easily upon using phage or antibiotic alone.

Journal ArticleDOI
TL;DR: The diversity of culturable bacteria present over the seasons at two depths in a mangrove sediment and in a transect area from the land to the sea is assessed.
Abstract: Mangrove ecosystems are environments subject to substantial degradation by anthropogenic activities. Its location, in coastal area, interfacing the continents and the oceans makes it substantially important in the prospection for biotechnological applications. In this study, we assessed the diversity of culturable bacteria present over the seasons at two depths (0–10 and 30–40 cm) in a mangrove sediment and in a transect area from the land to the sea. In total, 238 bacteria were isolated, characterized by Amplified Ribosomal DNA Restriction Analysis (ARDRA) and further identified, by Fatty Acid Methyl Esther (FAME-MIDI), into the orders of Vibrionales, Actinomycetales and Bacillales. Also the ability of the isolates in producing economically important enzymes (amylases, proteases, esterases and lipases) was evaluated and the order Vibrionales was the main enzymatic source.

Journal ArticleDOI
Jin Zeng1, Liuyan Yang1, Jiayun Li1, Yi Liang1, Lin Xiao1, Lijuan Jiang1, Dayong Zhao1 
TL;DR: Wang et al. as discussed by the authors investigated the vertical distribution of bacterial community structure in two eutrophic lakes of China, Lake Taihu and Lake Xuanwu, using a molecular fingerprinting technique, denaturing gradient gel electrophoresis (DGGE) followed by DNA sequence analysis, and the results were interpreted with multivariate statistical analysis.
Abstract: Vertical distribution of bacterial community structure was investigated in the sediments of two eutrophic lakes of China, Lake Taihu and Lake Xuanwu. Profiles of bacterial communities were generated using a molecular fingerprinting technique, denaturing gradient gel electrophoresis (DGGE) followed by DNA sequence analysis, and the results were interpreted with multivariate statistical analysis. To assess changes in the genetic diversity of bacterial communities with changing depth, DGGE banding patterns were analysed by cluster analysis. Distinct clusters were recognized in different sampling stations of Lake Taihu. Canonical correspondence analysis (CCA) was carried out to infer the relationship between environmental variables and bacterial community structure. DGGE samples collected at the same sampling site clustered together in both lakes. Total phosphorus, organic matter and pH were considered to be the key factors driving the changes in bacterial community composition.

Journal ArticleDOI
TL;DR: The results indicated that A. haemolyticus can be used as a promising microorganism for Cr(VI) reduction from industrial wastewaters.
Abstract: The present work highlighted the studies on Cr(VI) reduction by cells of Acinetobacter haemolyticus (A. haemolyticus). The strain tolerated 90 mg Cr(VI) l−1 in LB broth compared to only 30 mg Cr(VI) l−1 in LB agar. From the FTIR analysis, the Cr(III) species formed was also most likely to form complexes with carboxyl, hydroxyl, and amide groups from the bacteria. A TEM study showed the absence of precipitates on the cell wall region of the bacteria. Instead, microprecipitates were observed in the cytoplasmic region of the cells, suggesting the transportation of Cr(VI) into the cells. Intracellular reduction of Cr(VI) was supported by a reductase test using soluble crude cell-free extracts. The specific reductase activity obtained was 0.52 µg Cr(VI) reduced per mg of protein an hour at pH 7.2 and 37°C. Our results indicated that A. haemolyticus can be used as a promising microorganism for Cr(VI) reduction from industrial wastewaters.

Journal ArticleDOI
TL;DR: High performance liquid chromatography assay showed the F. solani, Tax-3, produced taxol with a higher yield of 163.35 μg/L in the reformative potato dextrose liquid medium (d), revealing its potential applications for taxol production.
Abstract: An endophytic fungus, Tax-3, was isolated from barks of Taxus chinensis grown in the Qinba mountains, China. The strain was classified into Fusarium solani based on the morphological characteristics and the molecular phylogenetics inferred from the nuclear ribosomal DNA ITS sequences with the sequence similarity values of 100%. High performance liquid chromatography (HPLC) assay showed the F. solani, Tax-3, produced taxol with a higher yield of 163.35 μg/L in the reformative potato dextrose liquid medium (d), revealing its potential applications for taxol production.

Journal ArticleDOI
TL;DR: The wide distribution of exoenzyme activities in the isolates may indicate their important ecological role of element biogeochemical cycling in the studied deep-sea sedimentary environment.
Abstract: The Southern Okinawa Trough is an area of focused sedimentation due to particulate matter export from the shelf of the East China Sea and the island of Taiwan. In order to understand the geomicrobiological characteristics of this unique sedimentary environment, bacterial cultivations were carried out for an 8.61 m CASQ core sediment sample. A total of 98 heterotrophic bacterial isolates were characterized based on 16S rRNA gene phylogenetic analysis. These isolates can be grouped into four bacterial divisions, including 13 genera and more than 20 species. Bacteria of the γ-Proteobacteria lineage, especially those from the Halomonas (27 isolates) and Psychrobacter (20 isolates) groups, dominate in the culturable bacteria assemblage. They also have the broadest distribution along the depth of the sediment. More than 72.4% of the isolates showed extracellular hydrolytic enzyme activities, such as amylases, proteases, lipases and Dnases, and nearly 59.2% were cold-adapted exoenzyme-producers. Several Halomonas strains show almost all the tested hydrolases activities. The wide distribution of exoenzyme activities in the isolates may indicate their important ecological role of element biogeochemical cycling in the studied deep-sea sedimentary environment.