scispace - formally typeset
Search or ask a question
JournalISSN: 0749-503X

Yeast 

Wiley-Blackwell
About: Yeast is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Saccharomyces cerevisiae & Gene. It has an ISSN identifier of 0749-503X. Over the lifetime, 3286 publications have been published receiving 154031 citations. The journal is also known as: yeasts.


Papers
More filters
Journal ArticleDOI
01 Jul 1998-Yeast
TL;DR: A new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications that should further facilitate the rapid analysis of gene function in S. cerevisiae.
Abstract: An important recent advance in the functional analysis of Saccharomyces cerevisiae genes is the development of the one-step PCR-mediated technique for deletion and modification of chromosomal genes This method allows very rapid gene manipulations without requiring plasmid clones of the gene of interest We describe here a new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications Using as selectable marker the S cerevisiae TRP1 gene or modules containing the heterologous Schizosaccharomyces pombe his5 + or Escherichia coli kan r gene, these plasmids allow gene deletion, gene overexpression (using the regulatable GAL1 promoter), C- or N-terminal protein tagging [with GFP(S65T), GST, or the 3HA or 13Myc epitope], and partial N- or C-terminal deletions (with or without concomitant protein tagging) Because of the modular nature of the plasmids, they allow eYcient and economical use of a small number of PCR primers for a wide variety of gene manipulations Thus, these plasmids should further facilitate the rapid analysis of gene function in S cerevisiae ? 1998 John Wiley & Sons, Ltd

5,301 citations

Journal ArticleDOI
30 Jan 1998-Yeast
TL;DR: A set of yeast strains based on Saccharomyces cerevisiae S288C in which commonly used selectable marker genes are deleted by design based on the yeast genome sequence has been constructed and analysed and will reduce plasmid integration events which can interfere with a wide variety of molecular genetic applications.
Abstract: A set of yeast strains based on Saccharomyces cerevisiae S288C in which commonly used selectable marker genes are deleted by design based on the yeast genome sequence has been constructed and analysed. These strains minimize or eliminate the homology to the corresponding marker genes in commonly used vectors without significantly affecting adjacent gene expression. Because the homology between commonly used auxotrophic marker gene segments and genomic sequences has been largely or completely abolished, these strains will also reduce plasmid integration events which can interfere with a wide variety of molecular genetic applications. We also report the construction of new members of the pRS400 series of vectors, containing the kanMX, ADE2 and MET15 genes.

3,448 citations

Journal ArticleDOI
01 Dec 1994-Yeast
TL;DR: A dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA is constructed and tested, and some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10–3–10–4.
Abstract: We have constructed and tested a dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA. This kanMX module contains the known kanr open reading-frame of the E. coli transposon Tn903 fused to transcriptional and translational control sequences of the TEF gene of the filamentous fungus Ashbya gossypii. This hybrid module permits efficient selection of transformants resistant against geneticin (G418). We also constructed a lacZMT reporter module in which the open reading-frame of the E. coli lacZ gene (lacking the first 9 codons) is fused at its 3' end to the S. cerevisiae ADH1 terminator. KanMX and the lacZMT module, or both modules together, were cloned in the center of a new multiple cloning sequence comprising 18 unique restriction sites flanked by Not I sites. Using the double module for constructions of in-frame substitutions of genes, only one transformation experiment is necessary to test the activity of the promotor and to search for phenotypes due to inactivation of this gene. To allow for repeated use of the G418 selection some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10(-3)-10(-4). The 1.4 kb kanMX module was also shown to be very useful for PCR based gene disruptions. In an experiment in which a gene disruption was done with DNA molecules carrying PCR-added terminal sequences of only 35 bases homology to each target site, all twelve tested geneticin-resistant colonies carried the correctly integrated kanMX module.

2,727 citations

Journal ArticleDOI
01 Jul 1998-Yeast
TL;DR: A straightforward PCR‐based approach to the deletion, tagging, and overexpression of genes in their normal chromosomal locations in the fission yeast Schizosaccharomyces pombe, and a series of plasmids containing the kanMX6 module, which allows selection of G418‐resistant cells and thus provides a new heterologous marker for use in S. pom be.
Abstract: We describe a straightforward PCR-based approach to the deletion, tagging, and overexpression of genes in their normal chromosomal locations in the fission yeast Schizosaccharomyces pombe. Using this approach and the S. pombe ura4+ gene as a marker, nine genes were deleted with efficiencies of homologous integration ranging from 6 to 63%. We also constructed a series of plasmids containing the kanMX6 module, which allows selection of G418-resistant cells and thus provides a new heterologous marker for use in S. pombe. The modular nature of these constructs allows a small number of PCR primers to be used for a wide variety of gene manipulations, including deletion, overexpression (using the regulatable nmt1 promoter), C- or N-terminal protein tagging (with HA, Myc, GST, or GFP), and partial C- or N-terminal deletions with or without tagging. Nine genes were manipulated using these kanMX6 constructs as templates for PCR. The PCR primers included 60 to 80 bp of flanking sequences homologous to target sequences in the genome. Transformants were screened for homologous integration by PCR. In most cases, the efficiency of homologous integration was > or = 50%, and the lowest efficiency encountered was 17%. The methodology and constructs described here should greatly facilitate analysis of gene function in S. pombe.

2,212 citations

Journal ArticleDOI
15 Apr 1995-Yeast
TL;DR: The LiAc/SS‐DNA/PEG method was shown to be more effective than other treatments known to make cells transformable and caused tighter binding of 32P‐labelled plasmid DNA than did double‐stranded (DS) carrier.
Abstract: An improved lithium acetate (LiAc)/single-stranded DNA (SS-DNA)/polyethylene glycol (PEG) protocol which yields >1 × 106 transformants/μg plasmid DNA and the original protocol described by Schiestl and Gietz (1989) were used to investigate aspects of the mechanism of LiAc/SS-DNA/PEG transformation. The highest transformation efficiency was observed when 1 × 108 cells were transformed with 100 ng plasmid DNA in the presence of 50 μg SS carrier DNA. The yield of transformants increased linearly up to 5 μg plasmid per transformation. A 20-min heat shock at 42°C was necessary for maximal yields. PEG was found to deposit both carrier DNA and plasmid DNA onto cells. SS carrier DNA bound more effectively to the cells and caused tighter binding of 32P-labelled plasmid DNA than did double-stranded (DS) carrier. The LiAc/SS-DNA/PEG transformation method did not result in cell fusion. DS carrier DNA competed with DS vector DNA in the transformation reaction. SS plasmid DNA transformed cells poorly in combination with both SS and DS carrier DNA. The LiAc/SS-DNA/PEG method was shown to be more effective than other treatments known to make cells transformable. A model for the mechanism of transformation by the LiAc/SS-DNA/PEG method is discussed.

2,029 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202335
202264
202161
202053
201957
201855