scispace - formally typeset
Search or ask a question
JournalISSN: 1863-1959

Zoonoses and Public Health 

Wiley-Blackwell
About: Zoonoses and Public Health is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Population & Medicine. It has an ISSN identifier of 1863-1959. Over the lifetime, 1524 publications have been published receiving 32660 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A very high prevalence of the parasite was found in chickens raised in backyards and free‐range organic establishments and to assess the role of infected chickens in the epidemiology of toxoplasmosis in humans.
Abstract: Summary Chickens are considered one of the most important hosts in the epidemiology of Toxoplasma gondii infection because they are an efficient source of infection for cats that excrete the environmentally resistant oocysts and because humans may become infected with this parasite after eating undercooked infected chicken meat. The objective of this study is to review worldwide prevalence of T. gondii infection in chickens and to assess the role of infected chickens in the epidemiology of toxoplasmosis in humans. A very high prevalence of the parasite was found in chickens raised in backyards (up to 100%) and free-range organic (30–50%) establishments.

285 citations

Journal ArticleDOI
TL;DR: Prevention efforts should focus on educating cat owners about the importance of collecting cat faeces in litter boxes, spaying owned cats to reduce overpopulation, reducing the numbers of feral cats and promoting rigorous hand hygiene after gardening or soil contact.
Abstract: Cats are popular as pets worldwide because they are easy to care for and provide companionship that enriches the lives of human beings. Little attention has been focused on their potential to contaminate the environment with zoonotic pathogens. One such pathogen, the protozoan parasite Toxoplasma gondii, rarely causes clinical manifestations in cats or immunocompetent humans; however, it can have serious adverse effects on human foetuses and immunocompromised patients. Many human infections are believed to be acquired from eating undercooked or raw meat, such as pork and lamb (Tenter et al. Int. J. Parasitol., 30, 2000, 1217; Dubey et al. J. Parasitol. 91, 2005, 1082). However, the prevalence of T. gondii infection in human populations that do not consume meat or eat it well-cooked suggests that the acquisition of infection from the environment, via oocysts in soil, water or on uncooked vegetables, is also important (Rawal. Trans. Royal Soc. Trop. Med. Hyg., 53, 1959, 61; Roghmann et al. Am. J. Trop. Med. Hyg., 60, 1999, 790; Chacin-Bonilla et al. Am. J. Trop. Med. Hyg., 65, 2001, 131). In the past 20 years, two changes occurred that significantly increased the size of the cat population in the USA. Pet cat ownership grew from 50 million to 90 million animals, and animal welfare activists created feeding stations for abandoned and free-roaming cats. As many cat owners allow their cats to deposit faeces outside and cats maintained in colonies always defecate outside, ample opportunity exists for T. gondii oocysts to enter the environment and be transmitted to humans. Prevention efforts should focus on educating cat owners about the importance of collecting cat faeces in litter boxes, spaying owned cats to reduce overpopulation, reducing the numbers of feral cats and promoting rigorous hand hygiene after gardening or soil contact.

249 citations

Journal ArticleDOI
TL;DR: The current state of IAV in swine around the world is reviewed, the collaboration between international organizations and a network of laboratories engaged in human and animal IAV surveillance and research is highlighted, and the need to increase information in high‐priority regions is emphasized.
Abstract: Pigs and humans have shared influenza A viruses (IAV) since at least 1918, and many interspecies transmission events have been documented since that time. However, despite this interplay, relatively little is known regarding IAV circulating in swine around the world compared with the avian and human knowledge base. This gap in knowledge impedes our understanding of how viruses adapted to swine or man impacts the ecology and evolution of IAV as a whole and the true impact of swine IAV on human health. The pandemic H1N1 that emerged in 2009 underscored the need for greater surveillance and sharing of data on IAV in swine. In this paper, we review the current state of IAV in swine around the world, highlight the collaboration between international organizations and a network of laboratories engaged in human and animal IAV surveillance and research, and emphasize the need to increase information in high-priority regions. The need for global integration and rapid sharing of data and resources to fight IAV in swine and other animal species is apparent, but this effort requires grassroots support from governments, practicing veterinarians and the swine industry and, ultimately, requires significant increases in funding and infrastructure.

238 citations

Journal ArticleDOI
TL;DR: A combination of compulsory and voluntary actions with clear reduction goals resulted in a 56% reduction in antimicrobial use in farm animals in the Netherlands between 2007 and 2012 and aims at accomplishing a 70% reduction target in 2015.
Abstract: Use of antimicrobials in animals poses a potential risk for public health as it contributes to the selection and spread of antimicrobial resistance. Although knowledge of the negative consequences of extensive antimicrobial use in humans and animals accumulated over the decades, total therapeutic antimicrobial use in farm animals in the Netherlands doubled between 1990 and 2007. A series of facts and events formed a window of opportunity to reduce antimicrobial use in farm animals. The recent discovery of significant reservoirs of antimicrobial-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and extended spectrum beta-lactamase-producing bacteria (ESBL) in farm animals, with potential public health implications, combined with an increasing lack of confidence of the public in intensive livestock industries, and discrepancy between the very low antimicrobial use in humans and high use in animals, resulted in intensive collaboration between the government, veterinary professional organizations and important stakeholders within the livestock sector. A combination of compulsory and voluntary actions with clear reduction goals resulted in a 56% reduction in antimicrobial use in farm animals in the Netherlands between 2007 and 2012 and aims at accomplishing a 70% reduction target in 2015. This article describes and analyses the processes and actions behind this transition from an abundant antimicrobial use in farm animals towards a more prudent application of antimicrobials in farm animals in the Netherlands.

204 citations

Journal ArticleDOI
TL;DR: The current status of knowledge in the field of bat antiviral immunology including both adaptive and innate mechanisms of immune defence are reviewed and the need for further investigations in this area is highlighted.
Abstract: Despite being the second most species-rich and abundant group of mammals, bats are also among the least studied, with a particular paucity of information in the area of bat immunology. Although bats have a long history of association with rabies, the emergence and re-emergence of a number of viruses from bats that impact human and animal health has resulted in a resurgence of interest in bat immunology. Understanding how bats coexist with viruses in the absence of disease is essential if we are to begin to develop therapeutics to target viruses in humans and susceptible livestock and companion animals. Here, we review the current status of knowledge in the field of bat antiviral immunology including both adaptive and innate mechanisms of immune defence and highlight the need for further investigations in this area. Because data in this field are so limited, our discussion is based on both scientific discoveries and theoretical predictions. It is hoped that by provoking original, speculative or even controversial ideas or theories, this review may stimulate further research in this important field. Efforts to understand the immune systems of bats have been greatly facilitated in recent years by the availability of partial genome sequences from two species of bats, a megabat, Pteropus vampyrus, and a microbat, Myotis lucifugus, allowing the rapid identification of immune genes. Although bats appear to share most features of the immune system with other mammals, several studies have reported qualitative and quantitative differences in the immune responses of bats. These observations warrant further investigation to determine whether such differences are associated with the asymptomatic nature of viral infections in bats.

194 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202353
2022119
2021112
2020111
2019104
2018148