scispace - formally typeset
Search or ask a question
Journal ArticleDOI

1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive

01 May 1993-Journal of the American Chemical Society (American Chemical Society)-Vol. 115, Iss: 10, pp 4397-4398
About: This article is published in Journal of the American Chemical Society.The article was published on 1993-05-01. It has received 1348 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: This critical review is focussed on the most recently developed coupling reagents with particular attention paid to the pros and cons of the plethora of "acronym" based reagents.
Abstract: Amide bond formation is a fundamentally important reaction in organic synthesis, and is typically mediated by one of a myriad of so-called coupling reagents. This critical review is focussed on the most recently developed coupling reagents with particular attention paid to the pros and cons of the plethora of “acronym” based reagents. It aims to demystify the process allowing the chemist to make a sensible and educated choice when carrying out an amide coupling reaction (179 references).

1,686 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a method to solve the problem of "uniformity" in the literature: 1.0040−4020/$ doi:10.1016/

1,581 citations

Journal ArticleDOI
TL;DR: Thompson et al. as mentioned in this paper developed a method for the generation of large combinatorial libraries of peptides and oligonucleotides that are then screened against a receptor or enzyme to identify high affinity ligands or potent inhibitors, respectively.
Abstract: One of the initial steps in the development of therapeutic agents is the identification of lead compounds that bind to the receptor or enzyme target of interest. Many analogs of these lead compounds are then synthesized to define the key recognition elements for maximal activity. In general, many compounds must be evaluated in both the lead identification and optimization steps. Increasing burdens have been placed on these efforts due to the large number of new therapeutic targets that continue to be identified thorough modern molecular biology methods.1 To address this demand, very powerful chemical and biological methods have been developed for the generation of large combinatorial libraries of peptides2 and oligonucleotides3 that are then screened against a receptor or enzyme to identify high-affinity ligands or potent inhibitors, respectively. While these studies have clearly demonstrated the power of library synthesis and screening strategies, peptides and oligonucleotides generally have poor oral activities and rapid in vivo clearance;4 therefore their utility as bioavailable therapeutic agents is often limited. Due to the favorable pharmacokinetic properties of many small organic molecules (<600-700 molecular weight),5 the design, synthesis, and evaluation of libraries of these compounds6 has rapidly become a major frontier in organic chemistry. Lorin A. Thompson was born in Lexington, KY, in 1970. He received the Bachelor of Science degree from the University of North Carolina, Chapel Hill, in 1992 where he worked under the guidance of Joseph Desimone. He is currently pursuing his doctorate in the laboratory of Jonathan Ellman at UC Berkeley where he is the 1994 Glaxo-Wellcome fellow. His research interests include the development of synthetic methodology for organic library construction.

1,440 citations

Journal ArticleDOI
TL;DR: In this article, single-walled carbon nanotubes (SWCNTs) were functionalized with amino groups via chemical modification of carboxyl groups introduced on the carbon nanotide surface.
Abstract: Single-walled carbon nanotubes (SWCNT) functionalized with amino groups were prepared via chemical modification of carboxyl groups introduced on the carbon nanotube surface. Two different approaches (amide and amine-moieties) were used to produce the amino-functionalized nanotubes. The amino-termination allows further chemistry of the functionalized SWCNTs and makes possible covalent bonding to polymers and biological systems such as DNA and carbohydrates. The functionalization of the SWCNTs was characterized in detail using FTIR and XPS.

965 citations