scispace - formally typeset
Search or ask a question
Journal ArticleDOI

2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference

TL;DR: This document reflects a process whereby a group of experts and opinion leaders revisited the 1992 sepsis guidelines and found that apart from expanding the list of signs and symptoms of sepsi to reflect clinical bedside experience, no evidence exists to support a change to the definitions.
Abstract: Objective: In 1991, the American College of Chest Physicians (ACCP) and the Society of Critical Care Medicine (SCCM) convened a "Consensus Conference", the goals of which were to provide a conceptual and a practical framework to define the systemic inflammatory response to infection, which is a progressive inju- rious process that falls under the gen- eralized term 'sepsis' and includes sepsis-associated organ dysfunction as well. The general definitions intro- duced as a result of that conference have been widely used in practice, and have served as the foundation for in- clusion criteria for numerous clinical trials of therapeutic interventions. Nevertheless, there has been an impe- tus from experts in the field to modify these definitions to reflect our current understanding of the pathophysiology of these syndromes. Design: Several North American and European inten- sive care societies agreed to revisit the definitions for sepsis and related con- ditions. This conference was spon- sored by the Society of Critical Care Medicine (SCCM), The European So-
Citations
More filters
Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.
Abstract: To provide an update to “Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012”. A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

4,303 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an update to the original Surviving Sepsis Campaign clinical management guidelines for management of severe sepsis and septic shock, published in 2004.
Abstract: Objective To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004.

3,928 citations

01 Jan 2008
TL;DR: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, the GRADE system was used to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations.
Abstract: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004. Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation [1] indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations [2] indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7–10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure ≥ 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7–9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.

3,824 citations

References
More filters
Journal ArticleDOI
TL;DR: The ESICM developed a so-called sepsis-related organ failure assessment (SOFA) score to describe quantitatively and as objectively as possible the degree of organ dysfunction/failure over time in groups of patients or even in individual patients.
Abstract: Multiple organ failure (MOF) is a major cause of morbidity and mortali ty in the critically ill patient. Emerging in the 1970s, the concept of MOF was linked to modern developments in intensive care medicine [1]. Although an uncontrolled infection can lead to MOF [2], such a phenomenon is not always found. A number of mediators and the persistence of tissue hypoxia have been incriminated in the development of MOF [3]. The gut has been cited as a possible \"moto r \" of MOF [4]. Nevertheless, our knowledge regarding the pathophysiology of MOF remains limited. Furthermore, the development of new therapeutic interventions aiming at a reduction of the incidence and severity of organ failure calls for a better definition of the severity of organ dysfunction/failure to quantify the severity of illness. Accordingly, it is important to set some simple but objective criteria to define the degree of organ dysfunction/failure. The evolution of our knowledge of organ dysfunction/failure led us to establish several principles: 1. Organ dysfunction/failure is a process rather than an event. Hence, it should be seen as a continuum and should not be described simply as \"present\" or \"absent~' Hence, the assessment should be based on a scale. 2. The time factor is fundamental for several reasons: (a) Development and similarly resolution of organ failure may take some time. Patients dying early may not have time to develop organ dysfunction/failure. (b) The time course of organ dysfunction/failure can be mult imodal during a complex clinical course, what is sometimes referred to as a \"multiple-hit\" scenario. (c) Time evaluation allows a greater understanding of the disease process as a natural process or under the influence of therapeutic interventions. The collection of data on a daily basis seems adequate. 3. The evaluation of organ dysfunction/failure should be based on a limited number of simple but objective variables that are easily and routinely measured in every institution. The collection of this information should not impose any intervention beyond what is routinely performed in every ICU. The variables used should as much as possible be independent of therapy, since therapeutic management may vary from one institution to another and even from one patient to another (Table 1). Until recently, none of the existing systems describing organ failure met these criteria, since they were based on categorial definitions or described organ failure as present or absent [5-7] . The ESICM organized a consensus meeting in Paris in October 1994 to create a so-called sepsis-related organ failure assessment (SOFA) score, to describe quantitatively and as objectively as possible the degree of organ dysfunction/failure over time in groups of patients or even in individual patients (Fig. 1). There are two major applications of such a SOFA score: 1. To improve our Understanding of the natural history of organ dysfunction/failure and the interrelation between the failure of the various organs.

8,538 citations

Journal ArticleDOI
TL;DR: Severe sepsis is a common, expensive, and frequently fatal condition, with as many deaths annually as those from acute myocardial infarction, and is especially common in the elderly and is likely to increase substantially as the U.S. population ages.
Abstract: ObjectiveTo determine the incidence, cost, and outcome of severe sepsis in the United States.DesignObservational cohort study.SettingAll nonfederal hospitals (n = 847) in seven U.S. states.PatientsAll patients (n = 192,980) meeting criteria for severe sepsis based on the International Classification

7,888 citations


"2001 SCCM/ESICM/ACCP/ATS/SIS Intern..." refers background in this paper

  • ...Approximately 150,000 people die annually in Europe and 200,000 die annually in the United States (18)....

    [...]

Journal ArticleDOI
TL;DR: This phase 3 trial assessed whether treatment with drotrecogin alfa activated reduced the rate of death from any cause among patients with severe sepsis.
Abstract: Background Drotrecogin alfa (activated), or recombinant human activated protein C, has antithrombotic, antiinflammatory, and profibrinolytic properties. In a previous study, drotrecogin alfa activated produced dose-dependent reductions in the levels of markers of coagulation and inflammation in patients with severe sepsis. In this phase 3 trial, we assessed whether treatment with drotrecogin alfa activated reduced the rate of death from any cause among patients with severe sepsis. Methods We conducted a randomized, double-blind, placebo-controlled, multicenter trial. Patients with systemic inflammation and organ failure due to acute infection were enrolled and assigned to receive an intravenous infusion of either placebo or drotrecogin alfa activated (24 μg per kilogram of body weight per hour) for a total duration of 96 hours. The prospectively defined primary end point was death from any cause and was assessed 28 days after the start of the infusion. Patients were monitored for adverse events; changes i...

5,330 citations


"2001 SCCM/ESICM/ACCP/ATS/SIS Intern..." refers background in this paper

  • ...For example, an indicator of dysregulation of the coagulation system might be more valuable for making a decision about whether to institute therapy with drotrecogin alfa (activated) (36), whereas a marker of adrenal dysfunction might be more useful for determining whether to institute therapy with hydrocortisone (37)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors defined the definition of MI and established the following criteria for acute, evolving or recent MI: 1) Typical rise and gradual fall (troponin) or more rapid rise and fall (CK-MB) of biochemical markers of myocardial necrosis with at least one of the following: a) ischemic symptoms; b) development of pathologic Qwaves on the ECG; c) ECG changes indicative of ischemia (ST segment elevation or depression); or d) coronary artery intervention (e.g., coronary ang

4,427 citations

Related Papers (5)