scispace - formally typeset
Search or ask a question
Journal ArticleDOI

3D analysis of the soil porous architecture under long term contrasting management systems by X-ray computed tomography

TL;DR: In this paper, the effect of three contrasting tillage systems (zero-tillage, ZT, reduced tillage, RT, conventional tilage, CT) in the soil porous system of an Oxisol was analyzed.
Abstract: The development of adequate soil structure is important for achieving good physical status, which influences the sustainability of agricultural areas. Different management systems lead to the development of a wide range of soil pore network characteristics. The objective of this research was to analyze the effect of three contrasting tillage systems (zero-tillage, ZT; reduced tillage, RT; conventional tillage, CT) in the soil porous system of an Oxisol. Samples were collected from the surface layer (0–10 cm). An area under secondary forest (F) was also assessed to provide an undisturbed reference. X-ray Computed Tomography (μCT) scanning of undisturbed soil samples and image analysis were employed for analysis of the pore network. The soil under ZT had the smallest porosity in comparison to the other management systems. The conventionally tilled soil had the largest porosity and the most connected pores. One large connected pore was responsible for around 90% of the porosity of the resolvable pores (>35 μm) studied for all the management systems. Pores of elongated shapes, which enhance water movement through the soil, were the most frequent pores in terms of shape.

Summary (1 min read)

1. INTRODUCTION

  • The objective of this particular research was to apply the X-ray Computed Tomography technique to evaluate, in 3D and at the µm scale, the morphological properties of an Oxisol under contrasting soil management systems.
  • Experimental areas under long term zero-tillage and reduced and conventional tillage systems were investigated.
  • Samples were collected at the soil surface layer (0-10 cm).

2. MATERIALS AND METHODS

  • Differences in the soil morphological parameters due to the treatments were evaluated by a one-way analysis of variance followed by Tukey's HSD post hoc tests.
  • Results were classified as statistically significant at p<0.05.
  • Parameters such as the mean, standard deviation and coefficient of variations were also measured for each soil physical property analyzed.
  • Pearson correlations among each pair of variables were measured for some of the morphological properties.
  • The statistical analysis was carried out using PAST software (Hammer et al., 2001) .

3. RESULTS AND DISCUSSION

  • This type of pore system is related to soil structural development and it is indicative of structures that function well for water infiltration (Bullock and Thomasson, 1979) .
  • Garbout et al. (2013) determined that the volume of connected pores constituted 91% and 85% for drilling and ploughing areas, which indicates the great contribution of a main pore network to the overall porosity.
  • Dal Ferro et al. ( 2014) also observed a contribution of around 70% of macropores to porosity, which would contribute to water infiltration and potentially reduce erosion (Imhoff et al., 2010) .

CONCLUSIONS

  • The authors analyzed the structure of samples of an Oxisol under different management systems using X-ray Computed Tomography.
  • The results of pore connectivity, degree of anisotropy and tortuosity show that the soil structure under ZT was not negatively affected by the reduction in its porosity.
  • Similar to the 3D image visualizations, the largest contribution to porosity was due to the presence of a main pore network, which means the porous system was well connected in all the management systems.
  • The results of this study provided a detailed characterization of the soil porous system at the micrometric scale.

Did you find this useful? Give us your feedback

Figures (8)

Content maybe subject to copyright    Report

1
3D analysis of the soil porous architecture under
long term contrasting management systems by X-ray
Computed Tomography
L.F. Pires
a
, W.L. Roque
b
, J.A. Rosa
c
, S.J. Mooney
d
a
Laboratory of Physics Applied to Soils and Environment, Department of Physics, State University of Ponta Grossa,
84.030-900, Ponta Grossa, PR, Brazil
b
Petroleum Engineering Modelling Laboratory, Department of Scientific Computation, Federal University of Paraíba,
58.051-900, João Pessoa, PB, Brazil
c
Laboratory of Soil Physics, Agricultural Research Institute of Paraná, 84.001-970, Ponta Grossa, PR, Brazil
d
Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton
Bonington Campus, Leicestershire LE12 5RD, UK
Corresponding author:
Prof. Dr. Luiz F. Pires, Phone: (55) 42 3220 3044. Fax: (55) 42-3220-3042
E-mail: lfpires@uepg.br (Luiz F. Pires);
Proofs should be sent to:
Prof. Luiz Fernando Pires, Departamento de Física, Universidade Estadual de Ponta Grossa,
Campus de Uvaranas, Bloco L, Sala 15B; Av. Carlos Cavalcanti, 4748, CEP 84.030-900, Ponta
Grossa, PR, Brazil.

2
3D analysis of the soil porous architecture under long1
term contrasting management systems by X-ray2
Computed Tomography3
L.F. Pires
a,1
, W.L. Roque
b
, J.A. Rosa
c
, S.J. Mooney
d
4
a
Laboratory of Physics Applied to Soils and Environment, Department of Physics, State5
University of Ponta Grossa, 84.030-900, Ponta Grossa, PR, Brazil6
b
Petroleum Engineering Modelling Laboratory, Department of Scientific Computation, Federal7
University of Paraíba, 58.051-900, João Pessoa, PB, Brazil8
c
Agricultural Research Institute of Paraná, 84.001-970, Ponta Grossa, PR, Brazil9
d
Division of Agricultural and Environmental Sciences, School of Biosciences, University of10
Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK11
12
ABSTRACT13
The development of adequate soil structure is important for achieving good physical14
status, which influences the sustainability of agricultural areas. Different management15
systems lead to the development of a wide range of soil pore network characteristics.16
The objective of this research was to analyze the effect of three contrasting tillage17
systems (zero-tillage, ZT; reduced tillage, RT; conventional tillage, CT) in the soil18
porous system of an Oxisol. Samples were collected from the surface layer (0-10 cm).19
An area under secondary forest (F) was also assessed to provide an undisturbed20
reference. X-ray Computed Tomography (µCT) scanning of undisturbed soil samples21
and image analysis were employed for analysis of the pore network. The soil under ZT22
1
Corresponding author
Tel.: +55 42 3220-3044
E-mail addresses: luizfpires@gmail.com; lfpires@uepg.br (L.F. Pires)

3
had the smallest porosity in comparison to the other management systems. The23
conventionally tilled soil had the largest porosity and the most connected pores. One24
large connected pore was responsible for around 90% of the porosity of the resolvable25
pores (>35 µm) studied for all the management systems. Pores of elongated shapes,26
which enhance water movement through the soil, were the most frequent pores in27
terms of shape.28
Keywords: Minimum tillage; Zero-tillage; Conventional tillage; Morphological properties;29
X-ray microtomography; Soil structure.30
1. INTRODUCTION31
The use of tillage has been employed for centuries to improve soil structure for32
enhanced crop development. However, the choice of tillage systems can have a33
significant impact on a soil heath and quality. Sustainable farming systems greatly34
depend on soil quality (Bünemann et al., 2018). Soil tillage provokes substantial35
changes in several soil physical properties such as total porosity, bulk density, water36
retention and infiltration, penetration resistance, pore size distribution, connectivity and37
tortuosity (Imhoff et al., 2010; Daraghmeh et al., 2009; Blanco-Canqui et al., 2004;38
Katsvairo et al., 2002).39
In Brazil the adoption of minimum tillage systems such as reduced (RT) and40
zero tillage (ZT) is common. The total Brazilian area used in crop production is around41
66 million hectares and there are over 31 million hectares under ZT (FEBRAPDP,42
2013). Conventional tillage (CT) is characterized by the disruption of the top soil due to43
ploughing and harrowing operations employed to turn over and loosen the soil. As a44
result of these operations, macropores are created and pore continuity is disrupted,45
which directly affect the water movement (e.g. hydraulic conductivity and infiltration)46
and retention (Blanco-Canqui et al., 2017; Ogunwole et al., 2015; Cássaro et al., 2011;47
Imhoff et al., 2010). Minimum tillage systems such as RT and ZT do not usually lead to48

4
drastic soil structure changes. These systems, known as conservation techniques,49
have been utilized as a means of reducing tillage and field costs as well as for50
conserving soil structure due to reduced disturbance (Aziz et al., 2013; Cavalieri et al.,51
2009). The residues of the previous crop are left intact and the absence of harrowing in52
ZT and RT can increase soil organic carbon and aggregate stability, reduce CO
2
53
emissions and moderate fluxes of water, air and heat through the soil (Aziz et al., 2013;54
Daraghmeh et al., 2009; Zibilske and Bradford, 2007).55
The fluxes of water and air, organic matter decomposition, plant-available water56
and soil resistance to erosion are directly linked to the architecture of the soil porous57
system. Mesopores and macropores play an important role in these processes (Imhoff58
et al., 2010; Fuentes et al., 2004; Cameira et al., 2003). In CT, the soil porous system59
is affected by operations such as ploughing and harrowing, which can increase porosity60
and loosen soil (Mangalassery et al., 2014). This operation allows good root growth61
and air exchange, while the exposition of the soil to rain in tropical regions can62
sometimes lead to erosion (Alvarez et al., 2009). On the other hand, the activity of63
earthworms and root decay help to create channels and burrows under RT and ZT,64
which facilitate drainage and gaseous diffusion (Soto-Gómez et al., 2018; Carducci et65
al., 2017; Pires et al., 2017; Pierret et al., 2002).66
Based on the important functions that mesopores and macropores fulfill for a67
healthy soil, techniques to image and measure key properties such as X-ray Computed68
Tomography (µCT) are very important (Tseng et al., 2018; Yang et al., 2018; Ferreira69
et al., 2018; Pagenkemper et al., 2014). The spatial distribution of pores can be non-70
destructively imaged at high resolutions and in three dimensions (3D) by µCT (e.g.71
Galdos et al. 2018; Helliwell et al., 2013; Peth et al., 2008). µCT has been previously72
applied with success to study the size, shape, number, connectivity, degree of73
anisotropy, macropore thickness, fractal dimension and tortuosity of the soil porous74
system (Wang et al., 2016; Dal Ferro et al., 2014; Garbout et al., 2013; Vogel, 1997).75

5
This provides vital information to characterize the physical structure of the porous76
system, which allows a better understanding of key processes (i.e. mass and energy77
transport, nutrient cycling, root development) within the soil (Hillel, 2004).78
Previous studies on evaluating the influence of tillage systems at the µm scale79
in 3D in tropical soils are still scarce. In Brazil, one of the largest food and agricultural80
producers of the world, previous studies have characterized the soil porous system at81
µm to measure the porosity and pore size distribution of Brazilian Oxisols (Vaz et al.,82
2011), assessed the effect of tillage systems on the percentage of macropores83
(Beraldo et al., 2014) and explored the spatial and morphological configuration of the84
pore space of Oxisols under CT (Carducci et al., 2017, 2014). Other studies have85
determined the influence of ZT on the pore size and shape distribution of macropores86
(Passoni et al., 2015), tested the capacity of soil recovering under different87
management strategies (Marchini et al., 2015) and measured the impact of ZT and CT88
on the pore size and shape distribution and water retention (Pires et al., 2017). Recent89
work has analyzed the soil structure utilizing the geometrical parameters of the soil90
porous system (Tseng et al., 2018), considered the influence of liming on the structure91
of aggregates under ZT (Ferreira et al., 2018) and revealed the structural development92
associated with long term (>30 years) ZT (Galdos et al., 2018).93
The objective of this particular research was to apply the X-ray Computed94
Tomography technique to evaluate, in 3D and at the µm scale, the morphological95
properties of an Oxisol under contrasting soil management systems. Experimental96
areas under long term zero-tillage and reduced and conventional tillage systems were97
investigated. Samples were collected at the soil surface layer (0-10 cm).98
2. MATERIALS AND METHODS99
The experimental field plots of this study were located in Ponta Grossa, in a100
humid mesothermal Cfb-subtropical region in southern Brazil (25°09’S, 50°09’W, 875 m101

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the use of X-ray microtomography images associated with a computational algorithm based on the mercury intrusion porosimetry (MIP) was utilized for quantifying changes in the soil structure, induced by different management systems (CT, MT, NT), as compared to the same soil under forest (F).
Abstract: Agricultural soils are extremely susceptible to changes due to agricultural practices. Conventional tillage (CT), minimum tillage (MT) and no-tillage (NT) are examples of important management systems largely utilized in Brazil, one of the world’s leading producers of coffee, sugar, soybean, corn, and many other agricultural products. Evaluate how these managements disturb the soil structure at the micrometric scale constitutes one of the major challenges for the soil scientists. Due to its potential of producing high-resolution images, X-ray microtomography (μCT) has been increasingly considered as a technique for accurately characterizes three-dimensionally (3D) the soil pore network. In this study, the use of X-ray μCT images associated with a computational algorithm based on the mercury intrusion porosimetry (MIP) was utilized for quantifying changes in the soil structure, induced by different management systems (CT, MT, NT), as compared to the same soil under forest (F). 3D analyses of the pore system were carried out and complemented with information from the soil water retention curve (SWRC) and its first derivative, the water capacity function (WCF). The obtained results showed that the soil under CT and MT presented significant changes in its pore size distribution as compared to F and NT. Results from both methods showed that CT and NT were the managements that promoted major changes in the soil porosity mainly by increasing the percentage of transmission pores (

8 citations

Journal ArticleDOI
TL;DR: In this paper , the authors compared three XCT-based methods for estimating the intrinsic permeability (k) of complex porous media, such as soil, based on 3D high-resolution images.
Abstract: Nowadays there are many papers dealing with the analysis of the soil porous system through X-ray computed tomography (XCT). However, a reduced number of studies focus on modeling the intrinsic permeability (k) of complex porous media, such as soil, based on three-dimensional (3D) high-resolution images. The determination of k is fundamental to understanding several processes taking place in soil such as water and air transmission. Thus, this paper compares three XCT-based methods for estimating the k of the pore system of soil aggregates: i) Finite volume-based simulation (APES - Absolute Permeability Experiment Simulation), ii) Image-based parametrization of the Kozeny-Carman (IBP-KC) equation, and iii) Pore network model (PNM). The 3D image considered in the comparison of methods was acquired at the X-ray microtomography beamline at the Brazilian Synchrotron Light Facility, with a voxel size of 1.64 μm. APES was considered as a reference method for being less dependent on the configuration of sensitivity parameters. APES and PNM demonstrated to be more time consuming than the IBP-KC, the first taking longer among all for the k computation. PNM presented the drawback of higher sensitivity to thin pore ramifications, resulting in unrealistic values of k and requiring disconnecting one thinner pore to yield permeabilities comparable to the ones obtained by APES. This study demonstrated that a fine alternative to compute k for large image datasets is to calibrate faster methods (e.g., IBP-KC and PNM) against a slower but more reliable reference method (e.g., APES), using at least one 3D image, before applying the faster methods on the remaining images of the dataset.

8 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated how the physical structure of a compromised soil, arising from long-term bare-fallow management, was modified by adopting different field management practices.
Abstract: Agricultural practices can have significant effects on the physical and biological properties of soil The aim of this study was to understand how the physical structure of a compromised soil, arising from long-term bare-fallow management, was modified by adopting different field management practices We hypothesised that changing agricultural practice from bare-fallow to arable or grassland would influence the modification of pore structure via an increase in porosity, pore connectivity, and a more homogenous distribution of pore sizes; and that this change exerts a rapid development of soil structure following conversion Soil aggregates (< 2 mm) collected in successive years from field plots subjected to three contrasting managements were studied; viz bare-fallow, bare-fallow converted to arable, and bare-fallow converted to grassland Soil structure was assessed by X-ray Computed Tomography on the aggregates at 15 µm resolution, capturing detail relevant to soil biophysical processes The grassland system increased porosity, diversity of pore sizes, pore-connectivity and pore-surface density significantly over the decade following conversion However, measured at this resolution, the development of most of these metrics of soil structure required approximately 10 years post-conversion to show a significant effect The arable system did not influence soil structural development significantly Only the pore size distribution was modified in grassland in a shorter time frame (2 years post-conversion) Hence development of the soil structural characteristics appears to require at least a decadal timescale following conversion to grassland

7 citations


Cites background from "3D analysis of the soil porous arch..."

  • ...In the field, long-term management practices can have substantial impacts on soil structural dynamics (BacqLabreuil et al., 2018; Müller et al., 2019; Pires et al., 2019)....

    [...]

Journal ArticleDOI
TL;DR: In this article , the authors evaluated the long-term effect of on-farm integration of cover crops and livestock in the croplands converted from the native pasture on soil pore characteristics.
Abstract: Integrated crop-livestock system (ICLS) is expected to improve the soil structure and porosity, yet the studies quantifying the effect of ICLS on soil porosity is still limited. This study evaluated the long-term effect of on-farm integration of cover crops and livestock in the croplands converted from the native pasture on soil pore characteristics. The croplands included a traditionally used corn (Zea mays L.)-soybean (Glycine max (L.) Merr.) rotation of the region, referred as control, CNT and corn-soybean-cover crops with livestock grazing of corn and soybean residues and cover crops, referred as integrated crop-livestock system, ICLS. The native pasture (NP) was utilized as baseline to assess management induced changes in soil properties. Three intact soil core samples were collected from each land use - CNT, ICLS and NP. X-ray computed microtomography (μCT) at a resolution of 31.6 µm was used to assess soil pore structural parameters under all the three land uses. We found that CT- derived porosity was higher in NP (12.8%) and ICLS (8.2%) compared to the CNT (4.3%). Fractal dimension was higher in NP (2.5) compared to ICLS (2.4) and CNT (2.3). Soils under CNT had larger values of degree of anisotropy and tortuosity as compared to the NP and ICLS. The pores > 10 mm3 had the largest contribution to porosity, and these pores were significantly higher in ICLS than the CNT. Triaxial shaped pores occupied a bigger fraction of porosity and number of pores for all the treatments. Results of this study indicate that long-term adoption of ICLS improves soil pore properties which would enhance soil functional process and have positive implications for nutrient cycling, root growth, soil gas fluxes and water dynamics.

6 citations

References
More filters
Journal Article
TL;DR: PAST (PAleontological STatistics) as discussed by the authors is a simple-to-use software package for executing a range of standard numerical analysis and operations used in quantitative paleontology.
Abstract: A comprehensive, but simple-to-use software package for executing a range of standard numerical analysis and operations used in quantitative paleontology has been developed. The program, called PAST (PAleontological STatistics), runs on standard Windows computers and is available free of charge. PAST integrates spreadsheet-type data entry with univariate and multivariate statistics, curve fitting, timeseries analysis, data plotting, and simple phylogenetic analysis. Many of the functions are specific to paleontology and ecology, and these functions are not found in standard, more extensive, statistical packages. PAST also includes fourteen case studies (data files and exercises) illustrating use of the program for paleontological problems, making it a complete educational package for courses in quantitative methods.

19,926 citations

01 Jan 2001
TL;DR: PAST integrates spreadsheet-type data entry with univariate and multivariate statistics, curve fitting, timeseries analysis, data plotting, and simple phylogenetic analysis, making it a complete educational package for courses in quantitative methods.
Abstract: A comprehensive, but simple-to-use software package for executing a range of standard numerical analysis and operations used in quantitative paleontology has been developed. The program, called PAST (PAleontological STatistics), runs on standard Windows computers and is available free of charge. PAST integrates spreadsheet-type data entry with univariate and multivariate statistics, curve fitting, timeseries analysis, data plotting, and simple phylogenetic analysis. Many of the functions are specific to paleontology and ecology, and these functions are not found in standard, more extensive, statistical packages. PAST also includes fourteen case studies (data files and exercises) illustrating use of the program for paleontological problems, making it a complete educational package for courses in quantitative methods.

12,286 citations

Book ChapterDOI
01 Jan 1982

5,659 citations