scispace - formally typeset
Search or ask a question
Journal ArticleDOI

3D Porous Cu Current Collector/Li‐Metal Composite Anode for Stable Lithium‐Metal Batteries

01 May 2017-Advanced Functional Materials (John Wiley & Sons, Ltd)-Vol. 27, Iss: 18, pp 1606422
TL;DR: In this paper, a 3D porous Cu current collector/Li-metal composite anode is proposed to stabilize the Li-metal anode, which provides a cage for the redeposition of "hostless" lithium and accommodates the anode volume expansion during cycling.
Abstract: Lithium-metal batteries are of particular interest for next-generation electrical energy storage because of their high energy density on both volumetric and gravimetric bases. Effective strategies to stabilize the Li-metal anode are the prerequisite for the progress of these exceptional storage technologies, such as Li–S and Li–O2 batteries. Various challenges, such as uneven Li electrodeposition, anode volume expansion, and dendrite-induced short-circuit have hindered the practical application of rechargeable Li-metal batteries. Herein, a one-step facile and cost-effective strategy for stabilizing lithium-metal batteries via 3D porous Cu current collector/Li-metal composite anode is reported. The porous structure of the composite electrode provides a “cage” for the redeposition of “hostless” lithium and accommodates the anode volume expansion during cycling. Compared with planar Cu foil, its high specific surface area favors the electrochemical reaction kinetics and lowers the local current density along the anode. It leads to low interfacial resistance and stabilizes the Li electrodeposition. On this basis, galvanostatic measurements are performed on both symmetric cells and Li/Li4Ti5O12 cells and it is found that the electrodes exhibit exceptional abilities of promoting cell lifetime and stabilizing the cycling behavior. Although this work focuses on lithium metal, this novel tactic is easy to generalize to other metal electrodes.
Citations
More filters
Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: This work realizes a dendrite-free Li metal anode by introducing an anion-immobilized composite solid electrolyte, where anions are tethered to polymer chains and ceramic particles to inhibit lithium dendrites and construct safe batteries.
Abstract: Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic–polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all–solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO 4 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathodes, the all–solid-state lithium metal batteries render excellent specific capacities of above 150 mAh⋅g −1 and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries.

646 citations


Cites background from "3D Porous Cu Current Collector/Li‐M..."

  • ...Extensive efforts have been devoted to solving the above problems, including electrolyte additives (7, 14), stable nanostructured Li metal hosts (15), and the separator modification (16, 17)....

    [...]

Journal ArticleDOI
TL;DR: The approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail and perspectives regarding the strategies for developing Li- metal anodes are discussed to facilitate the practical application ofLi-metal batteries.
Abstract: High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries.

559 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
Languang Lu1, Xuebing Han1, Jianqiu Li1, Jianfeng Hua, Minggao Ouyang1 
TL;DR: In this article, a brief introduction to the composition of the battery management system (BMS) and its key issues such as battery cell voltage measurement, battery states estimation, battery uniformity and equalization, battery fault diagnosis and so on, is given.

3,650 citations

Journal ArticleDOI
TL;DR: In this article, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed, and the results obtained by modelling of Li dendrite growth have also been reviewed.
Abstract: Lithium (Li) metal is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mA h g−1), low density (0.59 g cm−3) and the lowest negative electrochemical potential (−3.040 V vs. the standard hydrogen electrode). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post-Li-ion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li–air batteries, Li–S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this paper, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed. Technologies utilized to characterize the morphology of Li deposition and the results obtained by modelling of Li dendrite growth have also been reviewed. Finally, recent development and urgent need in this field are discussed.

3,394 citations

Journal ArticleDOI
TL;DR: Li-S batteries have received everincreasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions as discussed by the authors.
Abstract: Rechargeable Li–S batteries have received ever-increasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions. Li–S batteries may represent a next-generation energy storage system, particularly for large scale applications. The obstacles to realize this high energy density mainly include high internal resistance, self-discharge and rapid capacity fading on cycling. These challenges can be met to a large degree by designing novel sulfur electrodes with “smart” nanostructures. This highlight provides an overview of major developments of positive electrodes based on this concept.

1,731 citations