scispace - formally typeset
Search or ask a question
Book

3G Evolution : HSPA and LTE for Mobile Broadband

TL;DR: In this paper, the authors present a very up-to-date and practical book, written by engineers working closely in 3GPP, gives insight into the newest technologies and standards adopted by threeGPP with detailed explanations of the specific solutions chosen and their implementation in HSPA and LTE.
Abstract: This very up-to-date and practical book, written by engineers working closely in 3GPP, gives insight into the newest technologies and standards adopted by 3GPP, with detailed explanations of the specific solutions chosen and their implementation in HSPA and LTE. The key technologies presented include multi-carrier transmission, advanced single-carrier transmission, advanced receivers, OFDM, MIMO and adaptive antenna solutions, advanced radio resource management and protocols, and different radio network architectures. Their role and use in the context of mobile broadband access in general is explained. Both a high-level overview and more detailed step-by-step explanations of HSPA and LTE implementation are given. An overview of other related systems such as TD SCDMA, CDMA2000, and WIMAX is also provided.This is a 'must-have' resource for engineers and other professionals working with cellular or wireless broadband technologies who need to know how to utilize the new technology to stay ahead of the competition.The authors of the book all work at Ericsson Research and are deeply involved in 3G development and standardisation since the early days of 3G research. They are leading experts in the field and are today still actively contributing to the standardisation of both HSPA and LTE within 3GPP. * Gives the first explanation of the radio access technologies and key international standards for moving to the next stage of 3G evolution: fully operational mobile broadband* Describes the new technologies selected by the 3GPP to realise High Speed Packet Access (HSPA) and Long Term Evolution (LTE) for mobile broadband * Gives both higher-level overviews and detailed explanations of HSPA and LTE as specified by 3GPP
Citations
More filters
Proceedings ArticleDOI
23 Sep 2011
TL;DR: In this paper, the authors proposed an iterative minimum mean square error (MMSE) based maximum likelihood (ML) detector for a single carrier frequency division multiple access (SC-FDMA) system.
Abstract: This paper proposes a new iterative minimum mean square error(MMSE) based maximum likelihood(ML) detector for a single carrier frequency division multiple access(SC-FDMA) system. In this scheme, conventional non-iterative ML post-detection process(ML-PDP) is modified to have an iterative structure. Modified iterative ML-PDP with reliability check enhances the system bit error rate(BER) performance about 1∼2dB per iteration at the BER of 10−. Additionally computational complexity caused by each iteration can be suppressed efficiently by adopting radius update process.

6 citations

Journal ArticleDOI
TL;DR: A novel nonlinear decoupling algorithm for the uplink of the WCDMA 3G cellular system which effectively compensates for the MIMO interactions is described and a simplified linearized form of the algorithm is developed.

6 citations

Journal ArticleDOI
TL;DR: Two proposed designs for DCI decoder are presented that exploits parallelism to enable fast blind decoding process and proves efficiency in meeting decoding time constraints besides, consuming a little power with a proven efficiency in utilization area perspective.
Abstract:  Abstract—The decoding of Downlink Control Information (DCI) in LTE is based upon a process that is defined as a blind decoding which depends on a number of decoding attempts on a number of Physical Downlink Control Channel (PDCCH) candidate locations for a number of defined DCI formats. In this paper, two proposed designs for DCI decoder are presented. The first decodes based upon monitoring PDCCH candidate locations serially. This design can perform the whole 44 decoding attempts within 87.3 % of the whole OFDM symbol time with extended cyclic prefix. So, it's well suited for Multicast/Broadcast over Single Frequency Network (MBSFN) subframes. However, this design doesn't meet the worst-case time of an LTE OFDM symbol with normal cyclic prefix. Therefore, a second design is proposed that exploits parallelism to enable fast blind decoding process. The proposed parallel design proves efficiency in meeting decoding time constraints besides, consuming a little power with a proven efficiency in utilization area perspective. The proposed parallel design performs all of 44 decoding attempts in a time of 7.8 µs which is only 11.7 % of an LTE useful OFDM symbol time with a logic power consumption of only 17000 µW. The proposed designs are simulated using Modelsim 6.4a and implemented in Plan Ahead 14.4 in 28 nm technology, Virtex7 FPGA kit of part number XC7V2000T, which is characterized by high performance and large capacity.

6 citations


Additional excerpts

  • ...1 [8]....

    [...]

Posted Content
TL;DR: The optimization problem can be transformed into an equivalent "no-relaying" broadcast channel optimization problem with each actual user substituted by two virtual users having different channel qualities and multiplexing weights.
Abstract: We provide the solution for optimizing the power and resource allocation over block-fading relay-assisted broadcast channels in order to maximize the long term average achievable rates region of the users. The problem formulation assumes regenerative (repetition coding) decode-and-forward (DF) relaying strategy, long-term average total transmitted power constraint, orthogonal multiplexing of the users messages within the channel blocks, possibility to use a direct transmission (DT) mode from the base station to the user terminal directly or a relaying (DF) transmission mode, and partial channel state information. We show that our optimization problem can be transformed into an equivalent "no-relaying" broadcast channel optimization problem with each actual user substituted by two virtual users having different channel qualities and multiplexing weights. The proposed power and resource allocation strategies are expressed in closed-form that can be applied practically in centralized relay-assisted wireless networks. Furthermore, we show by numerical examples that our scheme enlarges the achievable rates region significantly.

6 citations


Cites background or methods from "3G Evolution : HSPA and LTE for Mob..."

  • ...According to LTE specifications [13], CSI is obtained by various means and forwarded to the base station, where the resource allocatio n decisions are done....

    [...]

  • ...[12], [13], [14] ) standard is based on fixed access points 2 to do the relaying and within a centralized scheme in which the e-nodeB (base...

    [...]

01 Jan 2009
TL;DR: The main result shows that for a DF MIMO transceiver where the bit loading is jointly optimized with the transceiver filters, orthogonal transmission is optimal.
Abstract: This thesis considers the joint design of bit loading, precoding and receive filters for a multiple-input multiple-output (MIMO) digital communication system. Both the transmitter and the receiver are assumed to know the channel matrix perfectly. It is well known that, for linear MIMO transceivers, orthogonal transmission (i.e., diagonalization of the channel matrix) is optimal for some criteria such as maximum mutual information. It has been shown that if the receiver uses the linear minimum mean squared error (MMSE) detector, the optimal transmission strategy is to perform bit loading on orthogonal subchannels. In the first part of the thesis, we consider the problem of designing the transceiver in order to minimize the probability of error given maximum likelihood (ML) detection. A joint bit loading and linear precoder design is proposed that outperforms the optimal orthogonal transmission. The design uses lattice invariant operations to transform the channel matrix into a lattice generator matrix with large minimum distance separation at a low price in terms of transmit power. With appropriate approximations, it is shown that this corresponds to selecting lattices with good sphere-packing properties. An algorithm for this power minimization is presented along with a lower bound on the optimization. Apparently, given the optimal ML detector, orthogonal subchannels are (in general) suboptimal. The ML detector may suffer from high computational complexity, which motivates the use of the suboptimal but less complex MMSE detector. An intermediate detector in terms of complexity and performance is the decision feedback (DF) detector. In the second part of the thesis, we consider the problem of joint bit loading and precoding assuming the DF detector. The main result shows that for a DF MIMO transceiver where the bit loading is jointly optimized with the transceiver filters, orthogonal transmission is optimal. As a consequence, inter-symbol interference is eliminated and the DF part of the receiver is actually not required, only the linear part is needed. The proof is based on a relaxation of the discrete set of available bit rates on the individual subchannels to the set of positive real numbers. In practice, the signal constellations are discrete and the optimal relaxed bit loading has to be rounded. It is shown that the loss due to rounding is small, and an upper bound on the maximum loss is derived. Numerical results are presented that confirm the theoretical results and demonstrate that orthogonal transmission and the truly optimal DF design perform almost equally well. An algorithm that makes the filter design problem especially easy to solve is presented. As a byproduct from the work on decision feedback detectors we also present some work on the problem of optimizing a Schur-convex objective under a linearly shifted, or skewed, majorization constraint. Similar to the case with a regular majorization constraint, the solution is found to be the same for the entire class of cost functions. Furthermore, it is shown that the problem is equivalent to identifying the convex hull under a simple polygon defined by the constraint parameters. This leads to an algorithm that produces the exact optimum with linear computational complexity. As applications, two unitary precoder designs for MIMO communication systems that use heterogenous signal constellations and employ DF detection at the receiver are presented.

6 citations