scispace - formally typeset
Search or ask a question
Book

4G: LTE/LTE-Advanced for Mobile Broadband

TL;DR: In this article, the authors focus on LTE with full updates including LTE-Advanced to provide a complete picture of the LTE system, including the physical layer, access procedures, broadcast, relaying, spectrum and RF characteristics, and system performance.
Abstract: Based on the bestseller "3G Evolution - HSPA and LTE for mobile broadband" and reflecting the ongoing success of LTE throughout the world, this book focuses on LTE with full updates including LTE-Advanced to provide a complete picture of the LTE system. Overview and detailed explanations are given for the latest LTE standards for radio interface architecture, the physical layer, access procedures, broadcast, relaying, spectrum and RF characteristics, and system performance. Key technologies presented include multi-carrier transmission, advanced single-carrier transmission, advanced receivers, OFDM, MIMO and adaptive antenna solutions, advanced radio resource management and protocols, and different radio network architectures. Their role and use in the context of mobile broadband access in general is explained. Both a high-level overview and more detailed step-by-step explanations of the LTE/LTE-Advanced implementation are given. An overview of other related systems such as GSM/EDGE, HSPA, CDMA2000, and WIMAX is also provided. This book is a 'must-have' resource for engineers and other professionals in the telecommunications industry, working with cellular or wireless broadband technologies, giving an understanding of how to utilize the new technology in order to stay ahead of the competition. The authors of the book all work at Ericsson Research and have been deeply involved in 3G and 4G development and standardisation since the early days of 3G research. They are leading experts in the field and are today still actively contributing to the standardisation of LTE within 3GPP. Includes full details of the latest additions to the LTE Radio Access standards and technologies up to and including 3GPP Release 10Clear explanations of the role of the underlying technologies for LTE, including OFDM and MIMO Full coverage of LTE-Advanced, including LTE carrier aggregation, extended multi-antenna transmission, relaying functionality and heterogeneous deploymentsLTE radio interface architecture, physical layer, access procedures, MBMS, RF characteristics and system performance covered in detail
Citations
More filters
Proceedings ArticleDOI
09 Jul 2018
TL;DR: In this article, the authors proposed several uplink and downlink interference mitigation techniques to reduce the uplink throughput degradation of terrestrial UEs and ensure UAVs to remain in LTE coverage under the worst case scenarios when all the base stations transmit at full power.
Abstract: A main challenge in providing connectivity to the low altitude unmanned aerial vehicles (UAVs) through existing cellular network arises due to the increased interference in the network. The increased altitude and favourable propagation condition cause UAVs to generate more interference to the neighbouring cells, and at the same time experience more interference from the downlink transmissions of the neighbouring base stations. The uplink interference problem may result in terrestrial user equipments (UEs) having degraded performance, whereas the downlink interference problem may make it challenging for a UAV to maintain connection with the network. In this paper, we propose several uplink and downlink interference mitigation techniques to address these issues. The results indicate that the proposed solutions can reduce the uplink throughput degradation of terrestrial UEs and ensure UAVs to remain in LTE coverage under the worst case scenarios when all the base stations transmit at full power.

41 citations

Proceedings ArticleDOI
02 Jun 2013
TL;DR: The core idea is a multi-mode radio platform, based on variable filter bank processing, which is able to perform modulation/detection functions simultaneously for different signal formats with adjustable center frequencies, bandwidths and subchannel spacings.
Abstract: Our main emphasis is on the use of enhanced OFDM and filter bank based multicarrier (FB-MC) waveforms for utilizing effectively the available fragmented spectrum in heterogeneous radio environments. Special attention is on the broadband-narrowband coexistence scenario of the Professional Mobile Radio (PMR) evolution. The target here is to provide broadband data services in coexistence with narrowband legacy services of the TETRA family. The core idea is a multi-mode radio platform, based on variable filter bank processing, which is able to perform modulation/detection functions simultaneously for different signal formats with adjustable center frequencies, bandwidths and subchannel spacings.

41 citations


Cites background from "4G: LTE/LTE-Advanced for Mobile Bro..."

  • ...Due to the flat-fading channel characteristics, CP-OFDM is also an excellent basis for different multi-antenna (MIMO) techniques which are able to enhance the performance at link and system levels [6]....

    [...]

Patent
16 Jun 2010
TL;DR: In this paper, a system and machine-implemented method are described for communicating with a plurality of distributed-input-distributed-output (DIDO) clients.
Abstract: A system and machine-implemented method are described for communicating with a plurality of distributed-input-distributed-output (DIDO) clients. For example, a method according to one embodiment comprises: determining channel state information (CSI) defining a channel state between each of a first plurality of DIDO antennas and each of the DIDO clients; using the CSI to determine distributed-input-distributed-output (DIDO) precoding weights for each of the channels between each of the first plurality of DIDO antennas and the antennas of each of the DIDO clients; using the CSI and DIDO precoding weights to determine link quality metrics defining link quality between each of the first plurality of DIDO antennas and the antennas of each of the DIDO clients; using the link-quality metrics, to determine modulation coding schemes (MCSs) for different DIDO clients; and transmitting precoded data streams from each of the first plurality of DIDO antennas to each of the individual DIDO clients using the determined MCSs for those clients.

41 citations

Patent
Gang Xiong1, Jong-Kae Fwu1, Seunghee Han2, Huaning Niu2, Ralf Bendlin2, Yuan Zhu2 
03 Dec 2015
TL;DR: In this article, a symmetric uplink/downlink (UL/DL) uplink and downlink (DL) designs that can be applied to both UL and DL transmissions are presented.
Abstract: Technology described herein addresses symmetric uplink (UL)/downlink (DL) designs that can be applied to both uplink and downlink transmissions. A symmetric UL/DL design can define a Transmission Time Interval (TTI) format with control channels and data channels multiplexed using Frequency Division Multiplexing (FDM) or Time Division Multiplexing (TDM) to partition the control channels and the data channels within a Transmission Time Interval (TTI). A unified waveform can be applied to both UL and DL transmissions. Several Demodulation Reference Signal (DM-RS) designs are also described. A hybrid mode for UL transmissions is also described.

40 citations