scispace - formally typeset
Search or ask a question
Journal ArticleDOI

5G Backhaul Challenges and Emerging Research Directions: A Survey

20 Apr 2016-IEEE Access (IEEE)-Vol. 4, pp 1743-1766
TL;DR: This pioneering survey explains the 5G backhaul paradigm, presents a critical analysis of legacy, cutting-edge solutions, and new trends in backhauling, and proposes a novel consolidated 5GBackhaul framework that reinforces the belief that no single solution can solve the holistic 5Gbackhaul problem.
Abstract: 5G is the next cellular generation and is expected to quench the growing thirst for taxing data rates and to enable the Internet of Things. Focused research and standardization work have been addressing the corresponding challenges from the radio perspective while employing advanced features, such as network densification, massive multiple-input-multiple-output antennae, coordinated multi-point processing, inter-cell interference mitigation techniques, carrier aggregation, and new spectrum exploration. Nevertheless, a new bottleneck has emerged: the backhaul. The ultra-dense and heavy traffic cells should be connected to the core network through the backhaul, often with extreme requirements in terms of capacity, latency, availability, energy, and cost efficiency. This pioneering survey explains the 5G backhaul paradigm, presents a critical analysis of legacy, cutting-edge solutions, and new trends in backhauling, and proposes a novel consolidated 5G backhaul framework. A new joint radio access and backhaul perspective is proposed for the evaluation of backhaul technologies which reinforces the belief that no single solution can solve the holistic 5G backhaul problem. This paper also reveals hidden advantages and shortcomings of backhaul solutions, which are not evident when backhaul technologies are inspected as an independent part of the 5G network. This survey is key in identifying essential catalysts that are believed to jointly pave the way to solving the beyond-2020 backhauling challenge. Lessons learned, unsolved challenges, and a new consolidated 5G backhaul vision are thus presented.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: 1) RAN; 2) core network; and 3) caching.
Abstract: The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: 1) RAN; 2) core network; and 3) caching. We also present a general overview of major 5G cellular network elements such as software defined network, network function virtualization, caching, and mobile edge computing capable of meeting latency and other 5G requirements.

643 citations


Cites background from "5G Backhaul Challenges and Emerging..."

  • ...5G backhaul requires higher capacity, lower latency, synchronization, security, and resiliency [13]....

    [...]

  • ...caching [11], [12], backhaul [13], resource management [14] and data centric network [15], [16] are available....

    [...]

Journal ArticleDOI
TL;DR: This paper presents the IoT technology from a bird's eye view covering its statistical/architectural trends, use cases, challenges and future prospects, and discusses challenges in the implementation of 5G-IoT due to high data-rates requiring both cloud-based platforms and IoT devices based edge computing.
Abstract: The Internet of Things (IoT)-centric concepts like augmented reality, high-resolution video streaming, self-driven cars, smart environment, e-health care, etc. have a ubiquitous presence now. These applications require higher data-rates, large bandwidth, increased capacity, low latency and high throughput. In light of these emerging concepts, IoT has revolutionized the world by providing seamless connectivity between heterogeneous networks (HetNets). The eventual aim of IoT is to introduce the plug and play technology providing the end-user, ease of operation, remotely access control and configurability. This paper presents the IoT technology from a bird’s eye view covering its statistical/architectural trends, use cases, challenges and future prospects. The paper also presents a detailed and extensive overview of the emerging 5G-IoT scenario. Fifth Generation (5G) cellular networks provide key enabling technologies for ubiquitous deployment of the IoT technology. These include carrier aggregation, multiple-input multiple-output (MIMO), massive-MIMO (M-MIMO), coordinated multipoint processing (CoMP), device-to-device (D2D) communications, centralized radio access network (CRAN), software-defined wireless sensor networking (SD-WSN), network function virtualization (NFV) and cognitive radios (CRs). This paper presents an exhaustive review for these key enabling technologies and also discusses the new emerging use cases of 5G-IoT driven by the advances in artificial intelligence, machine and deep learning, ongoing 5G initiatives, quality of service (QoS) requirements in 5G and its standardization issues. Finally, the paper discusses challenges in the implementation of 5G-IoT due to high data-rates requiring both cloud-based platforms and IoT devices based edge computing.

591 citations


Cites background or methods from "5G Backhaul Challenges and Emerging..."

  • ...The technique includes coordinated scheduling and joint transmission [67]....

    [...]

  • ...reusing the spectrum tightly and with low uplink and downlink power transmission [67] making it spectrum and energyefficient....

    [...]

  • ...Various initiatives are taken all around the world for adopting and standardizing 5G enabled IoT, as listed in Table 4 [67]....

    [...]

  • ...This enables centralized intelligence, cooperative communication among cells, improved cell utilization and reduces complexity and cost at the BS end [67]....

    [...]

  • ...cater for the interference, the HetNets uses enhanced intercell interference coordination (e-ICIC) and further enhanced ICIC (feICIC) [67]....

    [...]

Journal ArticleDOI
20 Jul 2020
TL;DR: In this article, the authors present the vision of future 6G wireless communication and its network architecture and also describe potential applications with 6G communication requirements and possible technologies, as well as potential challenges and research directions for achieving this goal.
Abstract: The demand for wireless connectivity has grown exponentially over the last few decades. Fifth-generation (5G) communications, with far more features than fourth-generation communications, will soon be deployed worldwide. A new paradigm of wireless communication, the sixth-generation (6G) system, with the full support of artificial intelligence, is expected to be implemented between 2027 and 2030. Beyond 5G, some fundamental issues that need to be addressed are higher system capacity, higher data rate, lower latency, higher security, and improved quality of service (QoS) compared to the 5G system. This paper presents the vision of future 6G wireless communication and its network architecture. This article describes emerging technologies such as artificial intelligence, terahertz communications, wireless optical technology, free-space optical network, blockchain, three-dimensional networking, quantum communications, unmanned aerial vehicles, cell-free communications, integration of wireless information and energy transfer, integrated sensing and communication, integrated access-backhaul networks, dynamic network slicing, holographic beamforming, backscatter communication, intelligent reflecting surface, proactive caching, and big data analytics that can assist the 6G architecture development in guaranteeing the QoS. Besides, expected applications with 6G communication requirements and possible technologies are presented. We also describe potential challenges and research directions for achieving this goal.

514 citations

Journal ArticleDOI
TL;DR: This exhaustive survey provides insights into the state-of-the-art of IoT enabling and emerging technologies and brings order in the existing literature by classifying contributions according to different research topics.

510 citations

Journal ArticleDOI
TL;DR: The suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, are explored, and the exciting future challenges in this domain are identified.
Abstract: The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers’ structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain.

505 citations


Cites background from "5G Backhaul Challenges and Emerging..."

  • ...and frequency synchronization, (5) low energy consumption and low cost [68]....

    [...]

  • ...[68] identify six key research directions including mmWave massive MIMO that would...

    [...]

  • ...In 5G ultra-dense small cell networks, the SBS would be connected to the core network/macrocell BS over mmWave massive MIMO link [68]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This article describes the scenarios identified for the purpose of driving the 5G research direction and gives initial directions for the technology components that will allow the fulfillment of the requirements of the identified 5G scenarios.
Abstract: METIS is the EU flagship 5G project with the objective of laying the foundation for 5G systems and building consensus prior to standardization. The METIS overall approach toward 5G builds on the evolution of existing technologies complemented by new radio concepts that are designed to meet the new and challenging requirements of use cases today?s radio access networks cannot support. The integration of these new radio concepts, such as massive MIMO, ultra dense networks, moving networks, and device-to-device, ultra reliable, and massive machine communications, will allow 5G to support the expected increase in mobile data volume while broadening the range of application domains that mobile communications can support beyond 2020. In this article, we describe the scenarios identified for the purpose of driving the 5G research direction. Furthermore, we give initial directions for the technology components (e.g., link level components, multinode/multiantenna, multi-RAT, and multi-layer networks and spectrum handling) that will allow the fulfillment of the requirements of the identified 5G scenarios.

1,934 citations

Journal ArticleDOI
TL;DR: In this article, a proactive caching mechanism is proposed to reduce peak traffic demands by proactively serving predictable user demands via caching at base stations and users' devices, and the results show that important gains can be obtained for each case study, with backhaul savings and a higher ratio of satisfied users.
Abstract: This article explores one of the key enablers of beyond 4G wireless networks leveraging small cell network deployments, proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context awareness, and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands via caching at base stations and users' devices. In order to show the effectiveness of proactive caching, we examine two case studies that exploit the spatial and social structure of the network, where proactive caching plays a crucial role. First, in order to alleviate backhaul congestion, we propose a mechanism whereby files are proactively cached during off-peak periods based on file popularity and correlations among user and file patterns. Second, leveraging social networks and D2D communications, we propose a procedure that exploits the social structure of the network by predicting the set of influential users to (proactively) cache strategic contents and disseminate them to their social ties via D2D communications. Exploiting this proactive caching paradigm, numerical results show that important gains can be obtained for each case study, with backhaul savings and a higher ratio of satisfied users of up to 22 and 26 percent, respectively. Higher gains can be further obtained by increasing the storage capability at the network edge.

1,157 citations

Journal ArticleDOI
18 Jul 2011
TL;DR: An overview of the technological advances in millimeter-wave circuit components, antennas, and propagation that will soon allow 60-GHz transceivers to provide multigigabit per second (multi-Gb/s) wireless communication data transfers in the consumer marketplace is presented.
Abstract: This tutorial presents an overview of the technological advances in millimeter-wave (mm-wave) circuit components, antennas, and propagation that will soon allow 60-GHz transceivers to provide multigigabit per second (multi-Gb/s) wireless communication data transfers in the consumer marketplace. Our goal is to help engineers understand the convergence of communications, circuits, and antennas, as the emerging world of subterahertz and terahertz wireless communications will require understanding at the intersections of these areas. This paper covers trends and recent accomplishments in a wide range of circuits and systems topics that must be understood to create massively broadband wireless communication systems of the future. In this paper, we present some evolving applications of massively broadband wireless communications, and use tables and graphs to show research progress from the literature on various radio system components, including on-chip and in-package antennas, radio-frequency (RF) power amplifiers (PAs), low-noise amplifiers (LNAs), voltage-controlled oscillators (VCOs), mixers, and analog-to-digital converters (ADCs). We focus primarily on silicon-based technologies, as these provide the best means of implementing very low-cost, highly integrated 60-GHz mm-wave circuits. In addition, the paper illuminates characterization techniques that are required to competently design and fabricate mm-wave devices in silicon, and illustrates effects of the 60-GHz RF propagation channel for both in-building and outdoor use. The paper concludes with an overview of the standardization and commercialization efforts for 60-GHz multi-Gb/s devices, and presents a novel way to compare the data rate versus power efficiency for future broadband devices.

907 citations

Journal ArticleDOI
TL;DR: New key PHY layer technology components such as a unified frame structure, multicarrier waveform design including a filtering functionality, sparse signal processing mechanisms, a robustness framework, and transmissions with very short latency enable indeed an efficient and scalable air interface supporting the highly varying set of requirements originating from the 5G drivers.
Abstract: This article provides some fundamental indications about wireless communications beyond LTE/LTE-A (5G), representing the key findings of the European research project 5GNOW. We start with identifying the drivers for making the transition to 5G networks. Just to name one, the advent of the Internet of Things and its integration with conventional human-initiated transmissions creates a need for a fundamental system redesign. Then we make clear that the strict paradigm of synchronism and orthogonality as applied in LTE prevents efficiency and scalability. We challenge this paradigm and propose new key PHY layer technology components such as a unified frame structure, multicarrier waveform design including a filtering functionality, sparse signal processing mechanisms, a robustness framework, and transmissions with very short latency. These components enable indeed an efficient and scalable air interface supporting the highly varying set of requirements originating from the 5G drivers.

882 citations


"5G Backhaul Challenges and Emerging..." refers background in this paper

  • ...Small cells are multi radio access technologies (multi-RAT) capable and represent an essential part of UDNs, which are considered an imperative 5G solution [3]–[8]....

    [...]