scispace - formally typeset
Search or ask a question
Journal ArticleDOI

6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

02 Mar 2021-Sensors (Multidisciplinary Digital Publishing Institute)-Vol. 21, Iss: 5, pp 1709
TL;DR: In this paper, the authors provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory-extended reality, digital replica, and more.
Abstract: The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communication.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A thorough review of 370 papers on the application of energy, IoT and machine learning in 5G and 6G from three major libraries: Web of Science, ACM Digital Library, and IEEE Explore is presented.
Abstract: Due to the rapid development of the fifth-generation (5G) applications, and increased demand for even faster communication networks, we expected to witness the birth of a new 6G technology within the next ten years. Many references suggested that the 6G wireless network standard may arrive around 2030. Therefore, this paper presents a critical analysis of 5G wireless networks’, significant technological limitations and reviews the anticipated challenges of the 6G communication networks. In this work, we have considered the applications of three of the highly demanding domains, namely: energy, Internet-of-Things (IoT) and machine learning. To this end, we present our vision on how the 6G communication networks should look like to support the applications of these domains. This work presents a thorough review of 370 papers on the application of energy, IoT and machine learning in 5G and 6G from three major libraries: Web of Science, ACM Digital Library, and IEEE Explore. The main contribution of this work is to provide a more comprehensive perspective, challenges, requirements, and context for potential work in the 6G communication standard.

46 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of motivation on collaborative work in higher education has been investigated, and the results from the quantitative analysis indicate that collaborative work, motivation, teamwork, and student involvement were important factors in improving student learning outcomes, as were blockchain-based tools.
Abstract: This research investigates blockchain technology, focusing on the influence of motivation on collaborative work, which positively influences learning performance in Higher Education Institutions (HEI). In addition, blockchain technology is correlated with decentralisation, security and integrity, and anonymity and encryption. It can also be perceived as a consensus mechanism, rewarding students, professors, and universities as a smart contract. Therefore, this technology has been used to improve higher education. It also allows less informed people to interact with better-informed peers and mentors. Finally, this study aims to enhance the current state of blockchain applications comprehension. The methodology used for this research includes document analysis, literature review, content analysis (blockchain platforms), the case study method, and the survey method. In statistical considerations, aiming to evaluate indicators, this research presents the Composite Reliability Analysis, Cronbach Alpha Coefficients, and the Bootstrapping method (Variance Inflation Factor). All these analyses aimed to present a designed research model. This exploratory research gathered data from 150 students at 3 universities in Serbia, Romania, and Portugal. As demonstrated, using student motivation has a significant and positive impact on the quality of student collaborative work. Student collaborative work also correlates with students’ higher level of engagement in the educational process, and the more engaged students are, the better their learning outcomes will be. As a result, in higher education, student involvement boosted learning outcomes. Researchers found that motivation, teamwork, and student involvement were important factors in improving student learning outcomes, as were blockchain-based tools. The results from the quantitative analysis indicate that Collaborative work, Motivation, Engagement, MOOCs, AR, VR, Gamification, and Online class were associated with learning performance.

25 citations

Journal ArticleDOI
TL;DR: A comprehensive review of research works that integrated reinforcement and deep reinforcement learning algorithms for vehicular networks management with an emphasis on vehicular telecommunications issues is provided.

25 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present key areas of applications of cell-free massive MIMO in the ubiquitous 5G and the envisioned 6G wireless networks. And they highlight the research directions, open issues, and lessons learned to stimulate cutting-edge research in this emerging domain of wireless communications.
Abstract: In recent times, the rapid growth in mobile subscriptions and the associated demand for high data rates fuels the need for a robust wireless network design to meet the required capacity and coverage. Deploying massive numbers of cellular base stations (BSs) over a geographic area to fulfill high-capacity demands and broad network coverage is quite challenging due to inter-cell interference and significant rate variations. Cell-free massive MIMO (CF-mMIMO), a key enabler for 5G and 6G wireless networks, has been identified as an innovative technology to address this problem. In CF-mMIMO, many irregularly scattered single access points (APs) are linked to a central processing unit (CPU) via a backhaul network that coherently serves a limited number of mobile stations (MSs) to achieve high energy efficiency (EE) and spectral gains. This paper presents key areas of applications of CF-mMIMO in the ubiquitous 5G, and the envisioned 6G wireless networks. First, a foundational background on massive MIMO solutions-cellular massive MIMO, network MIMO, and CF-mMIMO is presented, focusing on the application areas and associated challenges. Additionally, CF-mMIMO architectures, design considerations, and system modeling are discussed extensively. Furthermore, the key areas of application of CF-mMIMO such as simultaneous wireless information and power transfer (SWIPT), channel hardening, hardware efficiency, power control, non-orthogonal multiple access (NOMA), spectral efficiency (SE), and EE are discussed exhaustively. Finally, the research directions, open issues, and lessons learned to stimulate cutting-edge research in this emerging domain of wireless communications are highlighted.

24 citations

Posted Content
12 Nov 2021
TL;DR: In this article, the authors present recent advances in the 6G wireless networks, including the evolution from 1G to 5G communications, the research trends for 6G, enabling technologies, and state-of-the-art 6G projects.
Abstract: Smart services based on the Internet of Everything (IoE) are gaining considerable popularity due to the ever-increasing demands of wireless networks. This demands the appraisal of the wireless networks with enhanced properties as next-generation communication systems. Although 5G networks show great potential to support numerous IoE based services, it is not adequate to meet the complete requirements of the new smart applications. Therefore, there is an increased demand for envisioning the 6G wireless communication systems to overcome the major limitations in the existing 5G networks. Moreover, incorporating artificial intelligence in 6G will provide solutions for very complex problems relevant to network optimization. Furthermore, to add further value to the future 6G networks, researchers are investigating new technologies, such as THz and quantum communications. The requirements of future 6G wireless communications demand to support massive data-driven applications and the increasing number of users. This paper presents recent advances in the 6G wireless networks, including the evolution from 1G to 5G communications, the research trends for 6G, enabling technologies, and state-of-the-art 6G projects.

14 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: Simulation results demonstrate that an IRS-aided single-cell wireless system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains.
Abstract: Intelligent reflecting surface (IRS) is a revolutionary and transformative technology for achieving spectrum and energy efficient wireless communication cost-effectively in the future. Specifically, an IRS consists of a large number of low-cost passive elements each being able to reflect the incident signal independently with an adjustable phase shift so as to collaboratively achieve three-dimensional (3D) passive beamforming without the need of any transmit radio-frequency (RF) chains. In this paper, we study an IRS-aided single-cell wireless system where one IRS is deployed to assist in the communications between a multi-antenna access point (AP) and multiple single-antenna users. We formulate and solve new problems to minimize the total transmit power at the AP by jointly optimizing the transmit beamforming by active antenna array at the AP and reflect beamforming by passive phase shifters at the IRS, subject to users’ individual signal-to-interference-plus-noise ratio (SINR) constraints. Moreover, we analyze the asymptotic performance of IRS’s passive beamforming with infinitely large number of reflecting elements and compare it to that of the traditional active beamforming/relaying. Simulation results demonstrate that an IRS-aided MIMO system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains. We also draw useful insights into optimally deploying IRS in future wireless systems.

3,045 citations

Journal ArticleDOI
TL;DR: This survey paper formally defines transfer learning, presents information on current solutions, and reviews applications applied toTransfer learning, which can be applied to big data environments.
Abstract: Machine learning and data mining techniques have been used in numerous real-world applications. An assumption of traditional machine learning methodologies is the training data and testing data are taken from the same domain, such that the input feature space and data distribution characteristics are the same. However, in some real-world machine learning scenarios, this assumption does not hold. There are cases where training data is expensive or difficult to collect. Therefore, there is a need to create high-performance learners trained with more easily obtained data from different domains. This methodology is referred to as transfer learning. This survey paper formally defines transfer learning, presents information on current solutions, and reviews applications applied to transfer learning. Lastly, there is information listed on software downloads for various transfer learning solutions and a discussion of possible future research work. The transfer learning solutions surveyed are independent of data size and can be applied to big data environments.

2,900 citations

Journal ArticleDOI
TL;DR: This article identifies the primary drivers of 6G systems, in terms of applications and accompanying technological trends, and identifies the enabling technologies for the introduced 6G services and outlines a comprehensive research agenda that leverages those technologies.
Abstract: The ongoing deployment of 5G cellular systems is continuously exposing the inherent limitations of this system, compared to its original premise as an enabler for Internet of Everything applications. These 5G drawbacks are spurring worldwide activities focused on defining the next-generation 6G wireless system that can truly integrate far-reaching applications ranging from autonomous systems to extended reality. Despite recent 6G initiatives (one example is the 6Genesis project in Finland), the fundamental architectural and performance components of 6G remain largely undefined. In this article, we present a holistic, forward-looking vision that defines the tenets of a 6G system. We opine that 6G will not be a mere exploration of more spectrum at high-frequency bands, but it will rather be a convergence of upcoming technological trends driven by exciting, underlying services. In this regard, we first identify the primary drivers of 6G systems, in terms of applications and accompanying technological trends. Then, we propose a new set of service classes and expose their target 6G performance requirements. We then identify the enabling technologies for the introduced 6G services and outline a comprehensive research agenda that leverages those technologies. We conclude by providing concrete recommendations for the roadmap toward 6G. Ultimately, the intent of this article is to serve as a basis for stimulating more out-of-the-box research around 6G.

2,416 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a detailed overview and historical perspective on state-of-the-art solutions, and elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks.
Abstract: The future of mobile communications looks exciting with the potential new use cases and challenging requirements of future 6th generation (6G) and beyond wireless networks. Since the beginning of the modern era of wireless communications, the propagation medium has been perceived as a randomly behaving entity between the transmitter and the receiver, which degrades the quality of the received signal due to the uncontrollable interactions of the transmitted radio waves with the surrounding objects. The recent advent of reconfigurable intelligent surfaces in wireless communications enables, on the other hand, network operators to control the scattering, reflection, and refraction characteristics of the radio waves, by overcoming the negative effects of natural wireless propagation. Recent results have revealed that reconfigurable intelligent surfaces can effectively control the wavefront, e.g., the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. Motivated by the potential of this emerging technology, the present article is aimed to provide the readers with a detailed overview and historical perspective on state-of-the-art solutions, and to elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks. This article also explores theoretical performance limits of reconfigurable intelligent surface-assisted communication systems using mathematical techniques and elaborates on the potential use cases of intelligent surfaces in 6G and beyond wireless networks.

2,021 citations

Trending Questions (1)
How will 5g continue to evolve the opportunities and challenges to businesses, individuals, and society?

The paper discusses the evolution of wireless communication standards and the potential opportunities and challenges for businesses, individuals, and society in the context of 6G technology.