scispace - formally typeset
Search or ask a question
Journal ArticleDOI

6G opportunities arising from Internet of Things use cases: a review paper

TL;DR: In this article, the authors present a sample of IoT use cases that are representative of a wide variety of its implementations and identify some of the practical challenges and the lessons learned in the implementation of these use cases.
Abstract: The race for the 6th generation of wireless networks (6G) has begun. Researchers around the world have started to explore the best solutions for the challenges that the previous generations have experienced. To provide the readers with a clear map of the current developments, several review papers shared their vision and critically evaluated the state of the art. However, most of the work is based on general observations and the big picture vision, and lack the practical implementation challenges of the Internet of Things (IoT) use cases. This paper takes a novel approach in the review, as we present a sample of IoT use cases that are representative of a wide variety of its implementations. The chosen use cases are from the most research-active sectors that can benefit from 6G and its enabling technologies. These sectors are healthcare, smart grid, transport, and Industry 4.0. Additionally, we identified some of the practical challenges and the lessons learned in the implementation of these use cases. The review highlights the cases’ main requirements and how they overlap with the key drivers for the future generation of wireless networks.
Citations
More filters
Journal ArticleDOI
20 Jan 2022-Sensors
TL;DR: 6G mobile technology is reviewed, including its vision, requirements, enabling technologies, and challenges, and a total of 11 communication technologies, including terahertz communication, visible light communication, multiple access, coding, cell-free massive multiple-input multiple-output (CF-mMIMO) zero-energy interface, intelligent reflecting surface (IRS), and infusion of AI/machine learning in wireless transmission techniques, are presented.
Abstract: Ever since the introduction of fifth generation (5G) mobile communications, the mobile telecommunications industry has been debating whether 5G is an “evolution” or “revolution” from the previous legacy mobile networks, but now that 5G has been commercially available for the past few years, the research direction has recently shifted towards the upcoming generation of mobile communication system, known as the sixth generation (6G), which is expected to drastically provide significant and evolutionary, if not revolutionary, improvements in mobile networks. The promise of extremely high data rates (in terabits), artificial intelligence (AI), ultra-low latency, near-zero/low energy, and immense connected devices is expected to enhance the connectivity, sustainability, and trustworthiness and provide some new services, such as truly immersive “extended reality” (XR), high-fidelity mobile hologram, and a new generation of entertainment. Sixth generation and its vision are still under research and open for developers and researchers to establish and develop their directions to realize future 6G technology, which is expected to be ready as early as 2028. This paper reviews 6G mobile technology, including its vision, requirements, enabling technologies, and challenges. Meanwhile, a total of 11 communication technologies, including terahertz (THz) communication, visible light communication (VLC), multiple access, coding, cell-free massive multiple-input multiple-output (CF-mMIMO) zero-energy interface, intelligent reflecting surface (IRS), and infusion of AI/machine learning (ML) in wireless transmission techniques, are presented. Moreover, this paper compares 5G and 6G in terms of services, key technologies, and enabling communications techniques. Finally, it discusses the crucial future directions and technology developments in 6G.

49 citations

Journal ArticleDOI
01 Feb 2022-Sensors
TL;DR: It is argued that the ‘15-minute city’ concept can value-add from Smart City network technologies in particular through Digital Twins, Internet of Things (IoT), and 6G, and provide new opportunities to redefine agendas to better respond to economic and societal needs.
Abstract: The ‘15-minute city’ concept is emerging as a potent urban regeneration model in post-pandemic cities, offering new vantage points on liveability and urban health. While the concept is primarily geared towards rethinking urban morphologies, it can be furthered via the adoption of Smart Cities network technologies to provide tailored pathways to respond to contextualised challenges through the advent of data mining and processing to better inform urban decision-making processes. We argue that the ‘15-minute city’ concept can value-add from Smart City network technologies in particular through Digital Twins, Internet of Things (IoT), and 6G. The data gathered by these technologies, and processed via Machine Learning techniques, can unveil new patterns to understand the characteristics of urban fabrics. Collectively, those dimensions, unpacked to support the ‘15-minute city’ concept, can provide new opportunities to redefine agendas to better respond to economic and societal needs as well as align more closely with environmental commitments, including the United Nations’ Sustainable Development Goal 11 and the New Urban Agenda. This perspective paper presents new sets of opportunities for cities arguing that these new connectivities should be explored now so that appropriate protocols can be devised and so that urban agendas can be recalibrated to prepare for upcoming technology advances, opening new pathways for urban regeneration and resilience crafting.

24 citations

Journal ArticleDOI
24 Feb 2022-Sensors
TL;DR: In this review, the considered studies propose machine learning models, trained on data acquired via smart devices, wearable or non-wearable sensors and other Internet of Things technologies, to provide predictions or estimations regarding Parkinson’s disease aspects.
Abstract: Parkinson’s disease is a chronic neurodegenerative disease that affects a large portion of the population, especially the elderly. It manifests with motor, cognitive and other types of symptoms, decreasing significantly the patients’ quality of life. The recent advances in the Internet of Things and Artificial Intelligence fields, including the subdomains of machine learning and deep learning, can support Parkinson’s disease patients, their caregivers and clinicians at every stage of the disease, maximizing the treatment effectiveness and minimizing the respective healthcare costs at the same time. In this review, the considered studies propose machine learning models, trained on data acquired via smart devices, wearable or non-wearable sensors and other Internet of Things technologies, to provide predictions or estimations regarding Parkinson’s disease aspects. Seven hundred and seventy studies have been retrieved from three dominant academic literature databases. Finally, one hundred and twelve of them have been selected in a systematic way and have been considered in the state-of-the-art systematic review presented in this paper. These studies propose various methods, applied on various sensory data to address different Parkinson’s disease-related problems. The most widely deployed sensors, the most commonly addressed problems and the best performing algorithms are highlighted. Finally, some challenges are summarized along with some future considerations and opportunities that arise.

22 citations

Journal ArticleDOI
TL;DR: In this article, a survey of current developments and upcoming trends for 6G CR network communication is presented, where the authors studied the predicted applications, possible technologies, and security issues.
Abstract: Recently, 5G installation has been started globally. Different capabilities are in the consistent procedure, like ultrareliability, mass connectivity, and specific low latency. Though, 5G is insufficient to meet all the necessities of the future technology in 2030 and so on. Next generation information and communication technology is playing an important role in attraction of researchers, industries, and technical people. With respect to 5G networks, sixth-generation (6G) CR networks are anticipated to familiarize innovative use cases and performance metrics, such as to offer worldwide coverage, cost efficiency, enhanced spectral, energy improved intelligence, and safety. To reach such requirements, upcoming 6G CRNs will trust novel empowering technologies. Innovative network architecture and transmission technologies and air interface are of excessive position, like multiple accesses, waveform design, multiantenna technologies, and channel coding schemes. (1) To content, the condition should be of worldwide coverage, there will be no limit on 6G to global CR communication networks that may require to be completed with broadcast networks, like satellite communication networks, therefore, attaining a sea integrated communication network. (2) The spectrums overall will be entirely travelled to the supplementary rise connection density data rates in optical frequency bands, millimeter wave (mmWave), sub-6 GHz, and terahertz (THz). (3) To see big datasets created because of tremendously varied CR communication networks, antenna rush, diverse communication scenarios, new provision necessities, wide bandwidth, and 6G CRNs will allow an innovative variety of intelligent applications with the assistance of big data and AI technologies. (4) Need to improve network security when deploying 6G technology in CR networks. 6G is decentralized, intended, intelligent innovative, and distributed network. In this article, we studied a survey of current developments and upcoming trends. We studied the predicted applications, possible technologies, and security issues for 6G CR network communication. We also discussed predicted future key challenges in 6G.

21 citations

Journal ArticleDOI
30 Apr 2022-Sensors
TL;DR: An IoT-based real-time location monitoring system using Bluetooth Low Energy (BLE) for underground communication applications and an application-based analysis of industrial positioning systems are presented.
Abstract: In recent years, the IoT has emerged as the most promising technology in the key evolution of industry 4.0/industry 5.0, smart home automation (SHA), smart cities, energy savings and many other areas of wireless communication. There is a massively growing number of static and mobile IoT devices with a diversified range of speed and bandwidth, along with a growing demand for high data rates, which makes the network denser and more complicated. In this context, the next-generation communication technology, i.e., sixth generation (6G), is trying to build up the base to meet the imperative need of future network deployment. This article adopts the vision for 6G IoT systems and proposes an IoT-based real-time location monitoring system using Bluetooth Low Energy (BLE) for underground communication applications. An application-based analysis of industrial positioning systems is also presented.

13 citations

References
More filters
Book ChapterDOI
06 Sep 2014
TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Abstract: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

30,462 citations

Posted Content
TL;DR: The authors present some updates to YOLO!
Abstract: We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained this new network that's pretty swell. It's a little bigger than last time but more accurate. It's still fast though, don't worry. At 320x320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at the old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 mAP@50 in 51 ms on a Titan X, compared to 57.5 mAP@50 in 198 ms by RetinaNet, similar performance but 3.8x faster. As always, all the code is online at this https URL

12,770 citations

Journal ArticleDOI
TL;DR: This survey is directed to those who want to approach this complex discipline and contribute to its development, and finds that still major issues shall be faced by the research community.

12,539 citations

Proceedings ArticleDOI
B. J. Fogg1
26 Apr 2009
TL;DR: A new model for understanding human behavior is presented, which asserts that for a person to perform a target behavior, he or she must be sufficiently motivated, have the ability to perform the behavior, and be triggered to performed the behavior.
Abstract: This paper presents a new model for understanding human behavior. In this model (FBM), behavior is a product of three factors: motivation, ability, and triggers, each of which has subcomponents. The FBM asserts that for a person to perform a target behavior, he or she must (1) be sufficiently motivated, (2) have the ability to perform the behavior, and (3) be triggered to perform the behavior. These three factors must occur at the same moment, else the behavior will not happen. The FBM is useful in analysis and design of persuasive technologies. The FBM also helps teams work together efficiently because this model gives people a shared way of thinking about behavior change.

1,794 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in deep learning algorithms in computer vision is reviewed by highlighting the contributions and challenges from over 210 recent research papers, and the future trends and challenges in designing and training deep neural networks are summarized.

1,733 citations