scispace - formally typeset
Search or ask a question
Proceedings Article

A 10 b, 20 Msample/s, 35 mW pipeline A/D converter

01 Jan 1995-Vol. 30, Iss: 3, pp 166-172
TL;DR: In this article, the authors describe a 10 b, 20 µm pipeline A/D converter implemented in 1.2 μm CMOS technology which achieves a power dissipation of 35 mW at full speed operation.
Abstract: ―This paper describes a 10 b, 20 Msample/s pipeline A/D converter implemented in 1.2 μm CMOS technology which achieves a power dissipation of 35 mW at full speed operation. Circuit techniques used to achieve this level of power dissipation include digital correction to allow the use of dynamic comparators, and optimum scaling of capacitor values through the pipeline. Also, to be compatible with low voltage mixed-signal system environments, a switched capacitor (SC) circuit in each pipeline stage is implemented and operated at 3.3 V with a new high-speed, low-voltage operational amplifier and charge pump circuits. Measured performance includes 0.6 LSB of INL, 59.1 dB of SNDR (Signal-to-Noise-plus-Distortion-Ratio) for 100 kHz input at 20 Msample/s. At Nyquist sampling (10 MHz input), SNDR is 55.0 dB. Differential input range is ± 1 V, and measured input referred RMS noise is 220 μV. The power dissipation at 1 MS/s is below 3 mW with 58 dB of SNDR.
Citations
More filters
Journal ArticleDOI
R.H. Walden1
TL;DR: The state-of-the-art of ADCs is surveyed, including experimental converters and commercially available parts, and the distribution of resolution versus sampling rate provides insight into ADC performance limitations.
Abstract: Analog-to-digital converters (ADCs) are ubiquitous, critical components of software radio and other signal processing systems. This paper surveys the state-of-the-art of ADCs, including experimental converters and commercially available parts. The distribution of resolution versus sampling rate provides insight into ADC performance limitations. At sampling rates below 2 million samples per second (Gs/s), resolution appears to be limited by thermal noise. At sampling rates ranging from /spl sim/2 Ms/s to /spl sim/4 giga samples per second (Gs/s), resolution falls off by /spl sim/1 bit for every doubling of the sampling rate. This behavior may be attributed to uncertainty in the sampling instant due to aperture jitter. For ADCs operating at multi-Gs/s rates, the speed of the device technology is also a limiting factor due to comparator ambiguity. Many ADC architectures and integrated circuit technologies have been proposed and implemented to push back these limits. The trend toward single-chip ADCs brings lower power dissipation. However, technological progress as measured by the product of the ADC resolution (bits) times the sampling rate is slow. Average improvement is only /spl sim/1.5 bits for any given sampling frequency over the last six-eight years.

2,220 citations

Journal ArticleDOI
TL;DR: In this paper, a 1.5-V, 10-bit, 14.3-MS/s pipeline analog-to-digital converter was implemented in a 0.6/spl mu/m CMOS technology.
Abstract: A 1.5-V, 10-bit, 14.3-MS/s pipeline analog-to-digital converter was implemented in a 0.6 /spl mu/m CMOS technology. Emphasis was placed on observing device reliability constraints at low voltage. MOS switches were implemented without low-threshold devices by using a bootstrapping technique that does not subject the devices to large terminal voltages. The converter achieved a peak signal-to-noise-and-distortion ratio of 58.5 dB, maximum differential nonlinearity of 11.5 least significant bit (LSB), maximum integral nonlinearity of 0.7 LSB, and a power consumption of 36 mW.

966 citations

Journal ArticleDOI
09 Feb 2003
TL;DR: In this article, the authors proposed a digital background calibration technique as an enabling element to replace precision amplifiers by simple power-efficient open-loop stages, achieving more than 60% residue amplifier power savings over a conventional implementation.
Abstract: Precision amplifiers dominate the power dissipation in most high-speed pipelined analog-to-digital converters (ADCs). We propose a digital background calibration technique as an enabling element to replace precision amplifiers by simple power-efficient open-loop stages. In the multibit first stage of a 12-bit 75-MSamples/s proof-of-concept prototype, we achieve more than 60% residue amplifier power savings over a conventional implementation. The ADC has been fabricated in a 0.35-/spl mu/m double-poly quadruple-metal CMOS technology and achieves typical differential and integral nonlinearity within 0.5 LSB and 0.9 LSB, respectively. At Nyquist input frequencies, the measured signal-to-noise ratio is 67 dB and the total harmonic distortion is -74 dB. The IC consumes 290 mW at 3 V and occupies 7.9 mm/sup 2/.

555 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe a three-axis accelerometer implemented in a surface-micromachining technology with integrated CMOS, which measures changes in a capacitive half-bridge to detect deflections of a proof mass, which result from acceleration input.
Abstract: This paper describes a three-axis accelerometer implemented in a surface-micromachining technology with integrated CMOS. The accelerometer measures changes in a capacitive half-bridge to detect deflections of a proof mass, which result from acceleration input. The half-bridge is connected to a fully differential position-sense interface, the output of which is used for one-bit force feedback. By enclosing the proof mass in a one-bit feedback loop, simultaneous force balancing and analog-to-digital conversion are achieved. On-chip digital offset-trim electronics enable compensation of random offset in the electronic interface. Analytical performance calculations are shown to accurately model device behaviour. The fabricated single-chip accelerometer measures 4/spl times/4 mm/sup 2/, draws 27 mA from a 5-V supply, and has a dynamic range of 84, 81, and 70 dB along the x-, y-, and z-axes, respectively.

492 citations

Journal ArticleDOI
TL;DR: In this article, a 1.2-V-to-3.5-V charge pump and a 2-V to 16-V voltage pump are demonstrated. But the limitation imposed by the diode-configured output stage can be mitigated by pumping it with a clock of enhanced voltage amplitude.
Abstract: New MOS charge pumps utilizing the charge transfer switches (CTSs) to direct charge flow and generate boosted output voltage are described. Using the internal boosted voltage to backward control the CTS of a previous stage yields charge pumps that are suitable for low-voltage operation. Applying dynamic control to the CTSs can eliminate the reverse charge sharing phenomenon and further improve the voltage pumping gain. The limitation imposed by the diode-configured output stage can be mitigated by pumping it with a clock of enhanced voltage amplitude. Using the new circuit techniques, a 1.2-V-to-3.5-V charge pump and a 2-V-to-16-V charge pump are demonstrated.

422 citations

References
More filters
Journal ArticleDOI
Stephen H. Lewis1, H.S. Fetterman1, George Gross1, R. Ramachandran1, T.R. Viswanathan1 
TL;DR: In this paper, a 10-b 20-Msample/s analog-to-digital converter fabricated in a 0.9-mu m CMOS technology is described, which uses a pipelined nine-stage architecture with fully differential analog circuits and achieves a SNDR of 60 dB with a full-scale sinusoidal input at 5 MHz.
Abstract: A 10-b 20-Msample/s analog-to-digital converter fabricated in a 0.9- mu m CMOS technology is described. The converter uses a pipelined nine-stage architecture with fully differential analog circuits and achieves a signal-to-noise-and-distortion ratio (SNDR) of 60 dB with a full-scale sinusoidal input at 5 MHz. It occupies a 8.7 mm/sup 2/ and dissipates 240 mW. >

570 citations

Journal ArticleDOI
TL;DR: A self-calibrated pipelined A/D converter technique potentially appropriate for high-resolution video applications that requires much less area than multistep flash approaches and requires fewer clock cycles than error averaging techniques.
Abstract: Described is a self-calibrated pipelined A/D converter technique potentially appropriate for such high-resolution video applications. This approach requires much less area than multistep flash approaches and requires fewer clock cycles than error averaging techniques. Since self-calibration can be performed during interframe intervals, this approach is particularly attractive for video applications. A 3- mu m CMOS prototype fabricated using this architecture achieves 13-b resolution at 2.5 Msample/s. consumes 100 mW, and occupies 40 kmil/sup 2/ (26 mm/sup 2/), with a single 5-V supply and two-phase nonoverlapping clock. >

244 citations

Journal ArticleDOI
TL;DR: In this paper, an accurate and speed-enhanced half-V/sub CC/ voltage generator with a current-mirror amplifier and tri-state buffer is proposed to reduce data transmission delay.
Abstract: Low-voltage circuit technologies for higher-density dynamic RAMs (DRAMs) and their application to an experimental 64-Mb DRAM with a 1.5-V internal operating voltage are presented. A complementary current sensing scheme is proposed to reduce data transmission delay. A speed improvement of 20 ns was achieved when utilizing a 1.5-V power supply. An accurate and speed-enhanced half-V/sub CC/ voltage generator with a current-mirror amplifier and tri-state buffer is proposed. With it, a response time reduction of about 1.5 decades was realized. A word-line driver with a charge-pump circuit was developed to achieve a high boost ratio. A ratio of about 1.8 was obtained from a power supply voltage as low as 1.0 V. A 1.28 mu m/sup 2/ crown-shaped stacked-capacitor (CROWN) cell was also made to ensure a sufficient storage charge and to minimize data-line interference noise. An experimental 1.5 V 64 Mb DRAM was designed and fabricated with these technologies and 0.3 mu m electron-beam lithography. A typical access time of 70 ns was obtained, and a further reduction of 50 ns is expected based on simulation results. Thus, a high-speed performance, comparable to that of 16-Mb DRAMs, can be achieved with a typical power dissipation of 44 mW, one tenth that of 16-Mb DRAMs. This indicates that a low-voltage battery operation is a promising target for future DRAMs. >

222 citations

Journal ArticleDOI
01 Dec 1993
TL;DR: Two new circuit techniques, termed pipelined capacitive interpolation and error averaging circuits with capacitor networks, are developed, which result in very low power dissipation at a low power-supply voltage at the conversion frequency.
Abstract: This paper describes a circuit design and experimental results of a video-rate 10-b analog-to-digital converter (ADC) suitable for portable audio-visual equipment. Two new circuit techniques, termed pipelined capacitive interpolation and error averaging circuits with capacitor networks, are developed. As a result, very low power dissipation of 30 mW at a low power-supply voltage of 2.5 V is attained at the conversion frequency of 20 MHz. Also, a good DNL of less than +or-0.5 LSB and an acceptable signal-to-noise and distortion ratio of 55 dB are obtained for the input frequencies of 1 kHz and 1 MHz, respectively. The ADC is fabricated in 0.8- mu m CMOS technology and occupies an area of 2.6*2.5 mm/sup 2/. >

135 citations

Proceedings ArticleDOI
T. Matsuura1, Masao Hotta1, K. Usui, E. Imaizumi, S. Ueda 
04 Jun 1992
TL;DR: In this paper, a very low power, 95 mW, 10 b 15 MHz CMOS pipelined fully differential A/D converter (ADC) is fabricated using analog double sampling.
Abstract: A very-low-power, 95 mW, 10 b 15 MHz CMOS pipelined fully differential A/D converter (ADC) is fabricated using analog double sampling. Excellent power reduction is achieved using this sampling technique and a 3.3 V supply voltage design for comparator circuits. The 5 V internal supply is generated by an on-chip 3.3 V to 5 V charge pumping voltage generator. The fully differential approach is compatible with this type of implementation. The amplifier has a triple cascode configuration to achieve a gain of 80 dB. The converter exhibits good performance at 15 MHz, very good input bandwidth of 7.53 MHz at the 15 MHz conversion rate, and good linearity. Excellent power dissipation is observed. >

30 citations