scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A bacteriophage detection tool for viability assessment of Salmonella cells.

TL;DR: This work presents and validates a novel bacteriophage (phage)-based microbial detection tool to detect and assess Salmonella viability and shows the phage selectivity in cell recognition minimizes false-negative and false-positive results often associated with most detection methods.
Abstract: Salmonellosis, one of the most common food and water-borne diseases, has a major global health and economic impact. Salmonella cells present high infection rates, persistence over inauspicious conditions and the potential to preserve virulence in dormant states when cells are viable but non-culturable (VBNC). These facts are challenging for current detection methods. Culture methods lack the capacity to detect VBNC cells, while biomolecular methods (e.g. DNA- or protein-based) hardly distinguish between dead innocuous cells and their viable lethal counterparts. This work presents and validates a novel bacteriophage (phage)-based microbial detection tool to detect and assess Salmonella viability. Salmonella Enteritidis cells in a VBNC physiological state were evaluated by cell culture, flow-cytometry and epifluorescence microscopy, and further assayed with a biosensor platform. Free PVP-SE1 phages in solution showed the ability to recognize VBNC cells, with no lysis induction, in contrast to the minor recognition of heat-killed cells. This ability was confirmed for immobilized phages on gold surfaces, where the phage detection signal follows the same trend of the concentration of viable plus VBNC cells in the sample. The phage probe was then tested in a magnetoresistive biosensor platform allowing the quantitative detection and discrimination of viable and VBNC cells from dead cells, with high sensitivity. Signals arising from 3 to 4 cells per sensor were recorded. In comparison to a polyclonal antibody that does not distinguish viable from dead cells, the phage selectivity in cell recognition minimizes false-negative and false-positive results often associated with most detection methods.

Summary (3 min read)

1. Introduction

  • The ingestion of food, its derivatives and water contaminated with microbial pathogens (e.g. Escherichia coli, Campylobacter sp. or Salmonella sp.) is responsible for about 2.2 million deaths annually.
  • “Dormant” bacteria have therefore been called viable but non-culturable (VBNC) cells.
  • Significant progress has been reported in the phage-based detection of foodborne and waterborne pathogens (Hagens and Loessner, 2007; Singh et al., 2012; Smartt et al., 2012).

2.2. Bacteriophages and bacterial strains

  • PVP-SE1 was isolated from a Regensburg wastewater plant in the context of a European Project (Phagevet-P).
  • Salmonella Enteritidis strain S1400 was used as host (Sillankorva et al., 2010).
  • Campylobacter coli phage vB_CcoM-IBB_35, isolated from poultry intestines, was used as negative control (Carvalho et al., 2010a).

2.3. Phage propagation and buffer exchange

  • The phages were produced using the double layer agar technique as described by Sambrook and Russell (2001) and resuspended in SM buffer.
  • Exchange of SM buffer by MOPS buffer was needed to avoid the presence of amine groups from SM buffer, which may interfere with the surface chemistry adopted for phage immobilization on solid substrates.
  • Buffer exchange was made using a Vivaspin 500 centrifugal concentrator (MW 100 kDa).
  • Following the buffer exchange the concentration of phage was verified using the double layer agar technique.

2.4. Induction of Salmonella into viable but non-culturable (VBNC) state

  • Bacteria were induced to enter the VBNC state by using sodium hypochlorite (commercial bleach—stock concentration 5%) at different concentrations.
  • The serial dilutions of bleach were done with milli-Q water.
  • The samples were mixed at 200 rpm for 1 min at room temperature.
  • Following chlorination, the suspensions were centrifuged at 3420xg for 10 min at 4 1C and washed twice with cold PB.

2.5. Determination of cell viability

  • Cell viability was assessed after submitting bacteria to different bleach concentrations using the LIVE/DEADs BacLight™ Bacterial Viability and Counting Kit (Molecular Probes).
  • SYTO9 and PI dyes were used, accordingly to manufacturer's instructions.
  • Upon staining, cells were analyzed either by epifluorescence microscopy (OLYMPUS BX51 EXTREMO microscope) or by flow cytometry (BD LSRII flow cytometer using FACS DIVA software for acquisition; BD Biosciences).
  • For absolute cell quantification, 6 μm diameter microspheres were used at a known concentration in the flow cytometry acquisition.
  • Flow cytometry data was analyzed using the FlowJo software (Tree Star, Ashland, OR).

2.6. Phage lysis time and adsorption studies

  • 1 mL of each Salmonella sample was infected with PVP-SE1 phage at a multiplicity of infection (MOI) of 0.001, which refers to the number of phages that were added per cell.
  • Samples were taken immediately after infection (time 0) and after 20 min and 40 min of phage inoculation, followed by 10-fold dilution in MOPS and centrifugation at 10,000g for 10 min.
  • The supernatant was 10-fold serially-diluted in MOPS and plated to assess the concentration of PFU (plaque forming unit).
  • The phage adsorption fraction was calculated by dividing the PFU concentration at each time point by the initial phage concentration.
  • To assess the phage lysis time viable exponential phase grown Salmonella cells were used.

2.7. Phage immobilization on Au surfaces

  • Cr 5 nm/Au 40 nm thin film layers were sputtered (Kenosistec sputtering tool) over a silicon wafer.
  • The wafer was then spincoated with a photoresist (PR) polymer (AZ1505 AZ Electronic Materials) for surface protection and diced in 7 7 mm2 dies using an automatic dicing saw (Disco, DAD3350).
  • Substrates were then rinsed with isopropanol (IPA) and milli-Q water and dried under a nitrogen stream.
  • The gold surface was then functionalized with a heterobifunctional linker, the sulfo-LC-SPDP (sulfosuccinimidyl 6-[3′-(2-pyridyldithio)-propionamido] hexanoate).
  • Spot pictures were taken with an optical stereomicroscope (Nikon SMZ 1500) equipped with a CCD camera and analyzed using the image processing software ImageJ.

2.8. MR-biochip measurement

  • The MR-biochip was produced at INESC MN through a dedicated microfabrication process (Martins et al., 2009) and wirebonded to a PCB chip-carrier.
  • The probe sites on the MR biochip terminate with exposed Cr/Au pads, underneath which lie the magnetoresistive sensors that will detect the magnetic nanoparticle labels.
  • Briefly, the MR chip architecture comprises two distinct sensing areas arranged in two columns.
  • A 1 mL droplet of Salmonella-specific phage was spotted over the left column of sensors (12 sensors) and a non-specific phage (Campylobacter phage) on the right column of sensors (12 sensors).
  • The difference between the signal acquired after washing and the baseline signal is proportional to the number of cells bound to the sensor surface.

2.9. Antibody-conjugated MNPs preparation

  • Commercial 250 nm Protein A modified MNPs (Nanomag, Micromod) were used.
  • The unbound antibody was removed by the same magnetic separation procedure.
  • The functionalized MNPs were finally resuspended in 5 mL of PB Tw20 and injected over the chip.

2.10. Statistical analysis

  • All data are represented as mean7SD (standard deviation).
  • For Figs. 2 and 3, means were compared using two-way ANOVA followed by the Bonferroni post hoc test.

3.1. Induction of VBNC physiological state in Salmonella

  • Since the goal of this work was to prove the phage ability to detect the VBNC state of bacterial cells, a process was first developed capable of affecting cell viability in a controlled manner that would not lead to killing or lysing the entire cell population.
  • For this purpose different bactericidal and bacteriostatic compounds, known to induce the VBNC state in Salmonella cells, were tested (data not shown).
  • When exposed to fresh liquid medium under adequate growth conditions all tested concentrations of bleach, even above the break-point, showed cell growth (Supplementary data, Fig. S2.1).
  • In order to quantitatively determine the relative and absolute proportion of the different cell populations (classified as live, dead or compromised), flow cytometry analyses were conducted for the different cell samples (Fig. 1A bars and 1C).
  • Results confirmed that, despite being present in sub-optimal host infection conditions, the phage adsorption capability was conserved, maintaining its potential to be used as a detection tool.

3.3. Phage performance as a biorecognition element

  • After optimization of the surface chemistry (Supplementary data, Fig. S3.1 and S3.2), the phage was immobilized on an Au surface at discrete areas by manual spotting.
  • Also according to phage adsorption rates in solution, the immobilized phages were able to discriminate between viable and dead cells.
  • This resulted in reduced cell densities for samples with increasing number of dead cells (Fig. 3A) but proportional to the relative concentration of viable plus VBNC cells (compromised population) obtained by flow cytometry analysis (Fig. 1A—bars plot).
  • Identical biorecognition elements may hinder each other's proper attachment.
  • This is a common scenario in standard immunoassays where a labeling antibody may block the epitopes to the capture antibody or vice versa.

3.4. Phage-based magnetoresistive biochip for cell viability assessment

  • The feasibility of developing a “sandwich” phage-based biosensing system and its potential as a cell viability determination tool was assessed making use of an existent magnetoresistive (MR) biochip (Freitas et al., 2012; Martins et al., 2009, 2010) and respective electronic reader (Germano et al., 2009).
  • The biomolecular recognition strategy used on the biochip combines the phage and a magnetically-labeled antibody as recognition and labeling elements, respectively.
  • After the functionalization of the biochip with PVP-SE1 bacteriophage, each cell solution was loaded over the chip surface and incubated.
  • After washing, the magnetic fringe field created by the labels was detected as a variation on the sensor resistance.
  • Fig. 4A (dashed line and black dots) shows the biosensor normalized output for decreasing concentrations of viableþ VBNC cells.

4. Conclusions

  • The lytic phage PVP-SE1 was explored as an alternative biorecognition element for bacterial detection and viability assessment.
  • Taking into account the problematic occurrence of false positives associated with DNA-chips and the high production costs, poor stability and cross-reactivity related to immuno-chips, the development of phage-based biochips emerges as a valuable tool.
  • The feasibility to immobilize phages on sensing surfaces and conjugate this biomolecular tool with electronic analytical devices without losing functionality was proven.
  • The combined use of the magnetoresistive sensor with the phage probes allowed a clear detection of viable from dead Salmonella cells.

Did you find this useful? Give us your feedback

Figures (4)
Citations
More filters
Journal ArticleDOI

[...]

TL;DR: Various aspects of VBNC bacteria are described, which include their proteomic and genetic profiles under the VB NC state, conditions of resuscitation, methods of detection, antibiotic resistance, and observations on Rpf.
Abstract: Under stress conditions, many species of bacteria enter into starvation mode of metabolism or a physiologically viable but non-culturable (VBNC) state. Several human pathogenic bacteria have been reported to enter into the VBNC state under these conditions. The pathogenic VBNC bacteria cannot be grown using conventional culture media, although they continue to retain their viability and express their virulence. Though there have been debates on the VBNC concept in the past, several molecular studies have shown that not only can the VBNC state be induced under in vitro conditions but also that resuscitation from this state is possible under appropriate conditions. The most notable advance in resuscitating VBNC bacteria is the discovery of resuscitation-promoting factor (Rpf), which is a bacterial cytokines found in both Gram-positive and Gram-negative organisms. VBNC state is a survival strategy adopted by the bacteria, which has important implication in several fields, including environmental monitoring, food technology, and infectious disease management; and hence it is important to investigate the association of bacterial pathogens under VBNC state and the water/foodborne outbreaks. In this review, we describe various aspects of VBNC bacteria, which include their proteomic and genetic profiles under the VBNC state, conditions of resuscitation, methods of detection, antibiotic resistance, and observations on Rpf.

266 citations


Cites background from "A bacteriophage detection tool for ..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: This review highlights advances in techniques used to engineer phages as vehicles for drug delivery and vaccines, as well as for the assembly of new materials, and discusses existing challenges and opportunities.
Abstract: Soon after their discovery in the early 20th century, bacteriophages were recognized to have great potential as antimicrobial agents, a potential that has yet to be fully realized. The nascent field of phage therapy was adversely affected by inadequately controlled trials and the discovery of antibiotics. Although the study of phages as anti-infective agents slowed, phages played an important role in the development of molecular biology. In recent years, the increase in multidrug-resistant bacteria has renewed interest in the use of phages as antimicrobial agents. With the wide array of possibilities offered by genetic engineering, these bacterial viruses are being modified to precisely control and detect bacteria and to serve as new sources of antibacterials. In applications that go beyond their antimicrobial activity, phages are also being developed as vehicles for drug delivery and vaccines, as well as for the assembly of new materials. This review highlights advances in techniques used to engineer phages for all of these purposes and discusses existing challenges and opportunities for future work.

237 citations

Journal ArticleDOI

[...]

TL;DR: This review proposes to gather and comment different ligands used for the detection of whole cell bacteria and label-free methods, which enable the user to skip sampling processing steps and decrease the overall test cost.
Abstract: With the aim of getting earlier, sensitive and specific information on the presence –or absence – of bacterial pathogens, biosensors are getting an increasing interest for more than two decades. This is partly due to their reduced format, to the possibility to address several questions with a single device and also to the increasing panel of physical approaches that can be exploited for signal transducing. When designing a biosensor, the choice of the ligand motif remains a key element as it drives the efficiency and sensitivity of the assay. In this review, we propose to gather and comment different ligands used for the detection of whole cell bacteria. Because time is a crucial issue when looking for a pathogen, our attention was focused on whole cell assays and label-free methods, which enable the user to skip sampling processing steps and decrease the overall test cost.

73 citations

Journal ArticleDOI

[...]

TL;DR: This review provides an overview of the biology of the VB NC state, its relationship to food safety, and novel methods developed for the rapid detection and identification of VBNC cells.
Abstract: The viable but non-culturable (VBNC) state is a form of dormancy employed by many bacteria as a method of survival and can be found in nearly any ecological niche. Major characteristics that distinguish dormant cells is their ability to evade detection by routine laboratory culture, to tolerate stressful environments including food pasteurization processes and antibiotics, and to resuscitate within a host and cause disease. Given these defining characteristics, these resilient microbes raise significant concern for the food industry and for the health of those consuming foods harboring these veiled pathogens. This review provides an overview of the biology of the VBNC state, its relationship to food safety, and novel methods developed for the rapid detection and identification of VBNC cells.

62 citations

Journal ArticleDOI

[...]

TL;DR: This review gathers MP-FCM methodologies based on individual and simultaneous staining of microbial cells employed to investigate their physiological state following different physical and chemical antimicrobial treatments to give further insight in differences in microbial sub-population evolutions in response to antimicrobial treatment or compound.
Abstract: The investigation on antimicrobial mechanisms is a challenging and crucial issue in the fields of food or clinical microbiology, as it constitutes a prerequisite to the development of new antimicrobial processes or compounds, as well as to anticipate phenomenon of microbial resistance. Nowadays it is accepted that a cells population exposed to a stress can cause the appearance of different cell populations and in particular sub-lethally compromised cells which could be defined as viable but non culturable (VBNC). Recent advances on flow cytometry (FCM) and especially on multi-parameter flow cytometry (MP-FCM) provide the opportunity to obtain high-speed information at real time on damage at single-cell level. This review gathers MP-FCM methodologies based on individual and simultaneous staining of microbial cells employed to investigate their physiological state following different physical and chemical antimicrobial treatments. Special attention will be paid to recent studies exploiting the possibility to corroborate MP-FCM results with additional techniques (plate counting, microscopy, spectroscopy, molecular biology techniques, membrane modeling) in order to elucidate the antimicrobial mechanism of action of a given antimicrobial treatment or compound. The combination of MP-FCM methodologies with these additional methods is namely a promising and increasingly used approach to give further insight in differences in microbial sub-population evolutions in response to antimicrobial treatments.

53 citations


Cites background or methods from "A bacteriophage detection tool for ..."

  • [...]

  • [...]

  • [...]

  • [...]

References
More filters
Book

[...]

15 Jan 2001
TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Abstract: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years. No other manual has been so popular, or so influential. Molecular Cloning, Fourth Edition, by the celebrated founding author Joe Sambrook and new co-author, the distinguished HHMI investigator Michael Green, preserves the highly praised detail and clarity of previous editions and includes specific chapters and protocols commissioned for the book from expert practitioners at Yale, U Mass, Rockefeller University, Texas Tech, Cold Spring Harbor Laboratory, Washington University, and other leading institutions. The theoretical and historical underpinnings of techniques are prominent features of the presentation throughout, information that does much to help trouble-shoot experimental problems. For the fourth edition of this classic work, the content has been entirely recast to include nucleic-acid based methods selected as the most widely used and valuable in molecular and cellular biology laboratories. Core chapters from the third edition have been revised to feature current strategies and approaches to the preparation and cloning of nucleic acids, gene transfer, and expression analysis. They are augmented by 12 new chapters which show how DNA, RNA, and proteins should be prepared, evaluated, and manipulated, and how data generation and analysis can be handled. The new content includes methods for studying interactions between cellular components, such as microarrays, next-generation sequencing technologies, RNA interference, and epigenetic analysis using DNA methylation techniques and chromatin immunoprecipitation. To make sense of the wealth of data produced by these techniques, a bioinformatics chapter describes the use of analytical tools for comparing sequences of genes and proteins and identifying common expression patterns among sets of genes. Building on thirty years of trust, reliability, and authority, the fourth edition of Mol

215,117 citations

Book

[...]

01 Jan 2001
TL;DR: The content has been entirely recast to include nucleic-acid based methods selected as the most widely used and valuable in molecular and cellular biology laboratories.
Abstract: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years. No other manual has been so popular, or so influential. Molecular Cloning, Fourth Edition, by the celebrated founding author Joe Sambrook and new co-author, the distinguished HHMI investigator Michael Green, preserves the highly praised detail and clarity of previous editions and includes specific chapters and protocols commissioned for the book from expert practitioners at Yale, U Mass, Rockefeller University, Texas Tech, Cold Spring Harbor Laboratory, Washington University, and other leading institutions. The theoretical and historical underpinnings of techniques are prominent features of the presentation throughout, information that does much to help trouble-shoot experimental problems. For the fourth edition of this classic work, the content has been entirely recast to include nucleic-acid based methods selected as the most widely used and valuable in molecular and cellular biology laboratories. Core chapters from the third edition have been revised to feature current strategies and approaches to the preparation and cloning of nucleic acids, gene transfer, and expression analysis. They are augmented by 12 new chapters which show how DNA, RNA, and proteins should be prepared, evaluated, and manipulated, and how data generation and analysis can be handled. The new content includes methods for studying interactions between cellular components, such as microarrays, next-generation sequencing technologies, RNA interference, and epigenetic analysis using DNA methylation techniques and chromatin immunoprecipitation. To make sense of the wealth of data produced by these techniques, a bioinformatics chapter describes the use of analytical tools for comparing sequences of genes and proteins and identifying common expression patterns among sets of genes. Building on thirty years of trust, reliability, and authority, the fourth edition of Mol

23,709 citations


"A bacteriophage detection tool for ..." refers methods in this paper

  • [...]

  • [...]

Journal Article

[...]

TL;DR: The ability of cells to resuscitate from the VBNC state and return to an actively metabolizing and culturable form is described, as well as the ability of these cells to retain virulence.
Abstract: It had long been assumed that a bacterial cell was dead when it was no longer able to grow on routine culture media. We now know that this assumption is simplistic, and that there are many situations where a cell loses culturability but remains viable and potentially able to regrow. This mini-review defines what the "viable but nonculturable" (VBNC) state is, and illustrates the methods that can be used to show that a bacterial cell is in this physiological state. The diverse environmental factors which induce this state, and the variety of bacteria which have been shown to enter into the VBNC state, are listed. In recent years, a great amount of research has revealed what occurs in cells as they enter and exist in this state, and these studies are also detailed. The ability of cells to resuscitate from the VBNC state and return to an actively metabolizing and culturable form is described, as well as the ability of these cells to retain virulence. Finally, the question of why cells become nonculturable is addressed. It is hoped that this mini-review will encourage researchers to consider this survival state in their studies as an alternative to the conclusion that a lack of culturability indicates the cells they are examining are dead.

1,185 citations


"A bacteriophage detection tool for ..." refers background in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: The central role of catalase in the VBNC response of some bacteria, including its genetic regulation, is described and a variety of interesting chemical and biological factors have been shown to allow resuscitation, including extracellular resuscitation-promoting proteins, a novel quorum-sensing system and interactions with amoeba.
Abstract: Many bacteria, including a variety of important human pathogens, are known to respond to various environmental stresses by entry into a novel physiological state, where the cells remain viable, but are no longer culturable on standard laboratory media. On resuscitation from this ‘viable but nonculturable’ (VBNC) state, the cells regain culturability and the renewed ability to cause infection. It is likely that the VBNC state is a survival strategy, although several interesting alternative explanations have been suggested. This review describes the VBNC state, the various chemical and physical factors known to induce cells into this state, the cellular traits and gene expression exhibited by VBNC cells, their antibiotic resistance, retention of virulence and ability to attach and persist in the environment, and factors that have been found to allow resuscitation of VBNC cells. Along with simple reversal of the inducing stresses, a variety of interesting chemical and biological factors have been shown to allow resuscitation, including extracellular resuscitation-promoting proteins, a novel quorum-sensing system (AI-3) and interactions with amoeba. Finally, the central role of catalase in the VBNC response of some bacteria, including its genetic regulation, is described.

928 citations


"A bacteriophage detection tool for ..." refers background in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: The conventional methods, analytical techniques and recent developments in food pathogen detection, identification and quantification, with an emphasis on biosensors are described.
Abstract: Food safety is a global health goal and the foodborne diseases take a major crisis on health. Therefore, detection of microbial pathogens in food is the solution to the prevention and recognition of problems related to health and safety. For this reason, a comprehensive literature survey has been carried out aiming to give an overview in the field of foodborne pathogen detection. Conventional and standard bacterial detection methods such as culture and colony counting methods, immunology-based methods and polymerase chain reaction based methods, may take up to several hours or even a few days to yield an answer. Obviously this is inadequate, and recently many researchers are focusing towards the progress of rapid methods. Although new technologies like biosensors show potential approaches, further research and development is essential before biosensors become a real and reliable choice. New bio-molecular techniques for food pathogen detection are being developed to improve the biosensor characteristics such as sensitivity and selectivity, also which is rapid, reliable, effective and suitable for in situ analysis. This paper not only offers an overview in the area of microbial pathogen detection but it also describes the conventional methods, analytical techniques and recent developments in food pathogen detection, identification and quantification, with an emphasis on biosensors.

908 citations


"A bacteriophage detection tool for ..." refers background in this paper

  • [...]

Frequently Asked Questions (1)
Q1. What have the authors contributed in "A bacteriophage detection tool for viability assessment of salmonella cells" ?

This work presents and validates a novel bacteriophage ( phage ) -based microbial detection tool to detect and assess Salmonella viability. This ability was confirmed for immobilized phages on gold surfaces, where the phage detection signal follows the same trend of the concentration of viable plus VBNC cells in the sample. Salmonella Enteritidis cells in a VBNC physiological state were evaluated by cell culture, flow-cytometry and epifluorescence microscopy, and further assayed with a biosensor platform.