scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Bright Millisecond Radio Burst of Extragalactic Origin

02 Nov 2007-Science (American Association for the Advancement of Science)-Vol. 318, Iss: 5851, pp 777-780
TL;DR: A 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the Small Magellanic Cloud is found, which implies that it was a singular event such as a supernova or coalescence of relativistic objects.
Abstract: Pulsar surveys offer a rare opportunity to monitor the radio sky for impulsive burst-like events with millisecond durations. We analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3 degrees from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. No further bursts were seen in 90 hours of additional observations, which implies that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes.
Citations
More filters
Journal ArticleDOI
TL;DR: The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way.
Abstract: (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg$^2$ field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5$\sigma$ point-source depth in a single visit in $r$ will be $\sim 24.5$ (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg$^2$ with $\delta<+34.5^\circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg$^2$ region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to $r\sim27.5$. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.

2,738 citations

Journal ArticleDOI
M. P. van Haarlem1, Michael W. Wise2, Michael W. Wise1, A. W. Gunst1  +219 moreInstitutions (27)
TL;DR: In dit artikel zullen the authors LOFAR beschrijven: van de astronomische mogelijkheden met de nieuwe telescoop tot aan een nadere technische beshrijving of het instrument.
Abstract: LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR's new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.

2,067 citations

Journal ArticleDOI
05 Jul 2013-Science
TL;DR: The detection of four nonrepeating radio transient events with millisecond duration in data from the 64-meter Parkes radio telescope in Australia indicates that these radio bursts had their origin outside the authors' galaxy, but it is not possible to tell what caused them.
Abstract: Searches for transient astrophysical sources often reveal unexpected classes of objects that are useful physical laboratories. In a recent survey for pulsars and fast transients, we have uncovered four millisecond-duration radio transients all more than 40° from the Galactic plane. The bursts' properties indicate that they are of celestial rather than terrestrial origin. Host galaxy and intergalactic medium models suggest that they have cosmological redshifts of 0.5 to 1 and distances of up to 3 gigaparsecs. No temporally coincident x- or gamma-ray signature was identified in association with the bursts. Characterization of the source population and identification of host galaxies offers an opportunity to determine the baryonic content of the universe.

1,093 citations

Journal ArticleDOI
Željko Ivezić1, Steven M. Kahn2, J. Anthony Tyson3, Bob Abel4  +332 moreInstitutions (55)
TL;DR: The Large Synoptic Survey Telescope (LSST) as discussed by the authors is a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile.
Abstract: We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320–1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r ~ 27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.

921 citations

Journal ArticleDOI
10 Mar 2016-Nature
TL;DR: These repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.
Abstract: Observations of repeated fast radio bursts, having dispersion measures and sky positions consistent with those of FRB 121102, show that the signals do not originate in a single cataclysmic event and may come from a young, highly magnetized, extragalactic neutron star. Fast radio bursts (FRBs) are transient radio pulses that last a few milliseconds. They are thought to be extragalactic, and are of unknown physical origin. Many FRB models have proposed the cause to be one-time-only cataclysmic events. Follow-up monitoring of detected bursts did not reveal repeat bursts, consistent with such models. However, this paper reports ten additional bursts from the direction of FRB 121102, demonstrating that its source survived the energetic events that caused the bursts. Although there may be multiple physical origins for the burst, the repeating bursts seen from FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances1,2,3,4,5,6,7,8. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections9. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events10. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst4. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star11,12.

883 citations

References
More filters
Book
27 Dec 2004
TL;DR: In this paper, theoretical background for pulsar observations is described. But pulsars as physical tools are not used as a physical tool for the measurement of pulsar properties.
Abstract: Introduction 1 Basic pulsar properties 2 Pulsars as physical tools 3 Theoretical background 4 Instrumentation for pulsar observations 5 Observing known pulsars 6 Finding new pulsars 7 Pulsar timing 8 Beyond single radio dishes Appendix

980 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a new catalog of principal galaxies (PGC2003), which constitutes the framework of the HYPERLEDA database that supersedes the LEDA one, with more data and more capabilities.
Abstract: We present the new catalog of principal galaxies (PGC2003). It constitutes the framework of the HYPERLEDA database that supersedes the LEDA one, with more data and more capabilities. The catalog is still restricted to confirmed galaxies, i.e. about one million galaxies, brighter than similar to 18 B-mag. In order to provide the best possible identification for each galaxy we give: accurate coordinates ( typical accuracy better than 2 arcsec), diameter, axis ratio and position angle. Diameters and axis ratios have been homogenized to the RC2 system at the limiting surface brightness of 25B - mag arcsec(-2), using a new method, the EPIDEMIC method. In order to provide the best designation for each galaxy, we collected the names from 50 catalogues. The compatibility of the spelling is tested against NED and SIMBAD, and, as far as possible we used a spelling compatible with both. For some cases, where no consensus exists between NED, SIMBAD and LEDA, we propose some changes that could make the spelling of names fully compatible. The full catalog is distributed through the CDS and can be extracted from HYPERLEDA.

954 citations

Journal ArticleDOI
TL;DR: The survey is proving to be extremely successful, with more than 600 pulsars discovered so far as discussed by the authors, and the number of newly discovered pulsars tend to be young, distant and of high radio luminosity, which is a valuable sample for studies of pulsar emission properties, the Galactic distribution and evolution of pulsars, and as probes of interstellar medium properties.
Abstract: limiting flux density of the survey is about 0.2 mJy. At shorter or longer periods or higher dispersions, the sensitivity is reduced. Timing observations are carried out for pulsars discovered in the survey for 12‐18 months after confirmation to obtain accurate positions, spin parameters, dispersion measures, pulse shapes and mean flux densities. The survey is proving to be extremely successful, with more than 600 pulsars discovered so far. We expect that, when complete, this one survey will come close to finding as many pulsars as all previous pulsar surveys put together. The newly discovered pulsars tend to be young, distant and of high radio luminosity. They will form a valuable sample for studies of pulsar emission properties, the Galactic distribution and evolution of pulsars, and as probes of interstellar medium properties. This paper reports the timing and pulse shape parameters for the first 100 pulsars timed at Parkes, including three pulsars with periods of less than 100 ms which are members of binary systems. These results are briefly compared with the parameters of the previously known population.

651 citations

Journal ArticleDOI
16 Feb 2006-Nature
TL;DR: A search for radio sources that vary on much shorter timescales, finding eleven objects characterized by single, dispersed bursts having durations between 2 and 30 ms, suggesting origins in rotating neutron stars.
Abstract: A previously unknown population of superdense neutron stars has been identified. Termed RRATs, for rotating radio transients, their radio emissions vary on very short timescales, with bursts of 2 to 30 milliseconds occurring at intervals of 4 minutes to 3 hours. Eleven such objects have been found so far but their ephemeral nature suggests that there are many more in our Galaxy that remain unseen. This discovery implies a several-fold increase in the estimated radio-pulsar population, currently about 100,000. The radio sky is relatively unexplored for transient signals1, although the potential of radio-transient searches is high. This was demonstrated recently by the discovery of a previously unknown type of source2,3, varying on timescales of minutes to hours. Here we report a search for radio sources that vary on much shorter timescales. We found eleven objects characterized by single, dispersed bursts having durations between 2 and 30 ms. The average time intervals between bursts range from 4 min to 3 h with radio emission typically detectable for 4 s, and the rate of change of the pulse period has been measured for three of them; for one source, we have inferred a high magnetic field strength of 5 × 1013 G. This suggests that the new population is related to other classes of isolated neutron stars observed at X-ray and γ-ray wavelengths4.

644 citations

Journal ArticleDOI
TL;DR: In this paper, Parkes telescope observations of neutral hydrogen (Hi) in the Small Magellanic Cloud (SMC) were combined with an Australia Telescope Compact Array (ATCA) aperture synthesis mosaic to obtain a set of images sensitive to all angular (spatial) scales between 98 arcsec (30 pc) and 4° (4 kpc).
Abstract: We combine new Parkes telescope observations of neutral hydrogen (Hi) in the Small Magellanic Cloud (SMC) with an Australia Telescope Compact Array (ATCA) aperture synthesis mosaic to obtain a set of images sensitive to all angular (spatial) scales between 98 arcsec (30 pc) and 4° (4 kpc). The new data are used to study the HI spatial power spectrum over a range of contiguous scale sizes wider than those previously achieved in any other galaxy, including our own. The spatial power spectrum closely obeys the relation P(k) ∝ kγ, with γ =-3.04 ± 0.02, similar to values obtained by other authors for our own Galaxy which are in the range γ =-3.0 to -2.8. This is surprising given the very different morphology, gas-richness, star-formation rate and evolution of the two systems, and may imply similar mechanisms for structure formation. One interpretation of the P(k) power-law is that the interstellar medium (ISM) of the SMC is fractal in nature, consisting of a hierarchy of HI cloud structures created, for example, by homogeneous turbulence. The projected fractal dimension of Dp=1.5 is similar to values obtained by other authors for molecular clouds in the Galaxy in the size range ∼ 0.05 to 100 pc. Such a model is consistent with a low space-filling factor for the neutral gas. A kinematic study of the HI data reveals the existence of three supergiant shells which were previously undetectable in the ATCA data alone. These shells have diameters up to 1.8 kpc and require energies (in the standard supernova-driven models) up to 2×1054 erg. The structure and evolution of the ISM in the SMC are heavily influenced by the formation of these supergiant shells.

534 citations

Related Papers (5)