scispace - formally typeset
Open AccessReportDOI

A broad exploration of nonlinear dynamics in microbial systems motivated by chemostat experiments producing deterministic chaos.

Reads0
Chats0
TLDR
The Mathematical Analysis of the Becks et al. Experiments as discussed by the authors, which is the most closely related work to ours, can be found in Section 3.4.1.
Abstract
................................................................................................................ 3 Chapter 1: Mathematical Analysis of the Becks et al. (1995) Experiments. ............. 4 1.

read more

Content maybe subject to copyright    Report

Lawrence Berkeley National Laboratory
Recent Work
Title
A broad exploration of nonlinear dynamics in microbial systems motivated by chemostat
experiments producing deterministic chaos.
Permalink
https://escholarship.org/uc/item/9wr5396s
Authors
Molz, Fred
Faybishenko, Boris
Agarwal, Deborah
Publication Date
2022-08-05
Peer reviewed
eScholarship.org Powered by the California Digital Library
University of California

1"
"
A"Broad"Exploration"of"Coupled"Nonlinear"Dynamics"in"Microbial"
Systems"Motivated"by"Chemostat"Experiments"Producing"
Deterministic"Chaos."
""
Fred"Molz
1
,"Boris"Faybishenko
2
"and"Deborah"Agarwal
3"
1
Environmental"Engineering"&"Earth"Sciences"Dept.,"Clemson"University,"342"Computer"Court,"
Anderson,"SC""29625.""
2
Energy"Geosciences"Division,"Earth"and"Environmental"Sciences"Area,"Lawrence"Berkeley"
National"Laboratory,"Berkeley,"CA""94720""
3
Computer"Research"Division,"Lawrence"Berkeley"National"Laboratory,"Berkeley,"CA""94720""
"
"
LBNL Report Number LBNL-2001172
"
"
"
"
"
"
"
"
Acknowledgements"BF"and"DA"research"supported"by"the"U.S."DOE,"Office"of"
Science,"Office"of"Biological"and"Environmental"Research,"and"Office"of"Science,"
Office"of"Advanced"Scientific"Computing"under"the"DOE"Contract"No."DE-AC02-
05CH11231."FM"acknowledges"the"support"of"the"Clemson"University,"
Department"of"Environmental"Engineering"and"Earth"Sciences."
"

2"
"
"
"
Table"of"Contents."
ABSTRACT."................................................................................................................"3"
Chapter"1:"Mathematical"Analysis"of"the"Becks"et"al."(1995)"Experiments."............."4"
1.1."Introduction."..................................................................................................."4"
1.2."Mathematical"Model"Development.".............................................................."7"
1.3."Results."......................................................................................................"13"
1.4."Discussion"and"Conclusions."........................................................................."21"
1.5."References."..................................................................................................."25"
S1.""Supplemental"Information"Concerning"Predator"Preference"Change."........."27"
Chapter"2:"Further"Study"of"the"Becks"et"al."Equations."........................................."30"
2.1."Introduction."................................................................................................."30"
2.2."Another"Model"Generalization."...................................................................."31"
2.3."Results."........................................................................................................."33"
2.4."Conclusions.".................................................................................................."38"
2.5."References."..................................................................................................."38"
Chapter"3.""Dimensionless"Forms"for"Equations"(1.10)."........................................."40"
3.1."Introduction."................................................................................................."40"
3.2."Dimensionless"Formulation."........................................................................."40"
3.3."Example"Solution"to"the"Dimensionless"Equations."....................................."44"
3.4."Results"and"Discussion."................................................................................"44"
3.5."References."..................................................................................................."51"
Chapter"4:""How"Might"Information"Theory"Relate"to"Chaotic"Dynamics"in"
Biological"Systems?"................................................................................................"52"
4.1."Introduction."................................................................................................."52"
4.2."Interpretation"of"Shannon’s"Measure."........................................................."53"
4.3."The"concept"of"Redundancy."........................................................................"58"
4.4."What"About"Continuous"Probability"Densities?"..........................................."62"
4.5."Calculation"of"Chaotic"Information"Measures."............................................."64"
4.6."Summary"and"Future"Research"Suggestions."..............................................."70"
4.7."References."..................................................................................................."74"
"
"

3"
"
!"#$%!&$'(
The$main$objective$of$this$report$is$to$develop$an$exploratory$mathematical$
analysis$motivated$by$the$Becks$et$al.$(2005)$experiments,$which$will$be$
presented$in$Chapter$1.$$Related$details$of$the$resulting$model$will$be$
presented$in$Chapter$2,$and$a$detailed$non-dimensionalization$will$follow$in$
Chapter$3.$$During$the$research$to$be$described,$a$potential$relationship$to$
Shannon$information$theory$was$realized,$and$this$will$be$developed$in$
Chapter$4.$$Several$avenues$for$future$research$are$suggested,$and$a$more$
mathematically-oriented$presentation$of$the$non-linear$dynamical$properties$
of$the$equations$developed$in$Chapter$1$may$be$found$in$Faybishenko$et$al.$
(2018).$$
"
"" "

4"
"
&)*+,-.(/0(1*,)-2*,34*5(!6*57838(9:(,)-("-4;8(-,(*5'(</==>?(@A+-.32-6,8'"
/'/'(B6 ,.9 C D4 ,396 ' (
$ Deterministic$chaotic$dynamics$in$biological$systems$has$not$received$as$
much$attention$as$that$in$electronic$or$fluid-mechanical$systems,$and$
mathematical$models$are$at$an$early$stage$of$development$(Faybishenko$and$
Molz$(2013).$$However,$this$has$started$to$change.$$Molz$and$Faybishenko$
(2013)$have$recently$concluded $that$three $pape rs$(Bec ks$et$al,$2005 ;$Graham $
et$al.$2007;$Beninca$et$al.,$2008),$using$experimental$studies$and$relevant$
mathematics,$may$provide$convincing$demonstrations$that$deterministic$
chaos$is$present$in$relatively$simple$biochemical$systems$of$an$ecological$
nature.$(See$Constantino$et$al.,$1997$for$additional$support.)$$For$example,$
Graham$et$al.$(2007)$reported$experimental$results$demonstrating$the$
phenomenon$of$chaotic$instability$in$biological$nitrification$in$a$controlled$
laboratory$environment.$$In$this$study,$the$aerob ic$biorea ctors$(ae rated $
containers$of$nutrient$solution$and$microbes)$were$filled$initially$with$a$
mixture$of$wastewater$from$a$treatment$plant$and$simulated$wastewater$
involving$a$mixt ur e$o f$m a n y$m ic rob e s.$T h e$m a in $v ar ia bl es $re cor d ed $a s$a $time$
series$were$total$bacteria,$ammonia-oxidizing$bacteria$(AOB),$nitrite-oxidizing$
bacteria$(NOB),$and$protozoa,$along$with$effluent$concentrations$of$nitrate,$
nitrite$and$total$ammonia.$$The$method$of$Rosenstein$et$al.$(1993)$was$used$to$
calculate$Lyapunov$exponents,$which$fell$roughly$in$a$range$from$0.05$to$$
0.2$d
-1
.$$Graham$et$al .$(2 0 0 7) $co n cl u d ed $th a t $“n itr ifica tio n $is $p ro n e$t o$c h a ot ic$
behavior$because$of$a$fragile$AOB-NOB$mutualism,”$i.e.,$interaction.$
$ Beninca$et$al.$(2008)$conducted$a$laboratory$experiment$over$a$period$$
$
$

Citations
More filters
Dissertation

Thermodynamics of information processing in small systems

貴大 沙川
TL;DR: In this paper, a unified proof of the Second Law of Thermodynamics with feedback control is presented, and nonequilibrium Equalities with Feedback Control is shown to be equivalent to feedback control.
Journal ArticleDOI

Mathematical analysis of laboratory microbial experiments demonstrating deterministic chaotic dynamics.

TL;DR: The mathematical model demonstrated that the occurrence of chaotic dynamics requires a predator, p, preference for r versus c to increase significantly with increases in r and c populations, leading to a modified version of the Monod kinetics model.
References
More filters
Journal ArticleDOI

A practical method for calculating largest Lyapunov exponents from small data sets

TL;DR: A new method for calculating the largest Lyapunov exponent from an experimental time series is presented that is fast, easy to implement, and robust to changes in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level.
Journal ArticleDOI

Practical implementation of nonlinear time series methods: The TISEAN package

TL;DR: A variety of algorithms for data representation, prediction, noise reduction, dimension and Lyapunov estimation, and nonlinearity testing are discussed with particular emphasis on issues of implementation and choice of parameters.
Journal ArticleDOI

Life as a manifestation of the second law of thermodynamics

TL;DR: In this article, the second law of thermodynamics has been extended to nonequilibrium regions, where the evolution of a system is described in terms of gradients maintaining the system at some distance away from equilibrium.
Journal ArticleDOI

Chaos in a long-term experiment with a plankton community

TL;DR: The first experimental demonstration of chaos in a long-term experiment with a complex food web, isolated from the Baltic Sea, demonstrates that species interactions in food webs can generate chaos, and implies that stability is not required for the persistence of complex food webs, and that the long- term prediction of species abundances can be fundamentally impossible.
Journal ArticleDOI

Viruses as partners in spring bloom microbial trophodynamics.

TL;DR: The dynamic behavior observed for the virus population rules out the possibility that it is dominated by inactive species, and the viruses are suggested to be active members of the microbial food web as agents causing lysis in parts of the bacterial population, diverting part of theacterial production from the predatory food chain.
Frequently Asked Questions (2)
Q1. What are the contributions mentioned in the paper "A broad exploration of coupled nonlinear dynamics in microbial systems motivated by chemostat experiments producing deterministic chaos" ?

Ben-Naim et al. this paper proposed Shannon 's measure of uncertainty ( SMU ) for deterministic chaotic dynamics. 

The potential relation of chaotic dynamics to the appropriate information flows, being careful of what “ information ” actually means in an ecological context, appears very interesting, and it should be considered as a prime area for future research.