scispace - formally typeset
Open AccessReportDOI

A broad exploration of nonlinear dynamics in microbial systems motivated by chemostat experiments producing deterministic chaos.

Reads0
Chats0
TLDR
The Mathematical Analysis of the Becks et al. Experiments as discussed by the authors, which is the most closely related work to ours, can be found in Section 3.4.1.
Abstract
................................................................................................................ 3 Chapter 1: Mathematical Analysis of the Becks et al. (1995) Experiments. ............. 4 1.

read more

Content maybe subject to copyright    Report

Lawrence Berkeley National Laboratory
Recent Work
Title
A broad exploration of nonlinear dynamics in microbial systems motivated by chemostat
experiments producing deterministic chaos.
Permalink
https://escholarship.org/uc/item/9wr5396s
Authors
Molz, Fred
Faybishenko, Boris
Agarwal, Deborah
Publication Date
2022-08-05
Peer reviewed
eScholarship.org Powered by the California Digital Library
University of California

1"
"
A"Broad"Exploration"of"Coupled"Nonlinear"Dynamics"in"Microbial"
Systems"Motivated"by"Chemostat"Experiments"Producing"
Deterministic"Chaos."
""
Fred"Molz
1
,"Boris"Faybishenko
2
"and"Deborah"Agarwal
3"
1
Environmental"Engineering"&"Earth"Sciences"Dept.,"Clemson"University,"342"Computer"Court,"
Anderson,"SC""29625.""
2
Energy"Geosciences"Division,"Earth"and"Environmental"Sciences"Area,"Lawrence"Berkeley"
National"Laboratory,"Berkeley,"CA""94720""
3
Computer"Research"Division,"Lawrence"Berkeley"National"Laboratory,"Berkeley,"CA""94720""
"
"
LBNL Report Number LBNL-2001172
"
"
"
"
"
"
"
"
Acknowledgements"BF"and"DA"research"supported"by"the"U.S."DOE,"Office"of"
Science,"Office"of"Biological"and"Environmental"Research,"and"Office"of"Science,"
Office"of"Advanced"Scientific"Computing"under"the"DOE"Contract"No."DE-AC02-
05CH11231."FM"acknowledges"the"support"of"the"Clemson"University,"
Department"of"Environmental"Engineering"and"Earth"Sciences."
"

2"
"
"
"
Table"of"Contents."
ABSTRACT."................................................................................................................"3"
Chapter"1:"Mathematical"Analysis"of"the"Becks"et"al."(1995)"Experiments."............."4"
1.1."Introduction."..................................................................................................."4"
1.2."Mathematical"Model"Development.".............................................................."7"
1.3."Results."......................................................................................................"13"
1.4."Discussion"and"Conclusions."........................................................................."21"
1.5."References."..................................................................................................."25"
S1.""Supplemental"Information"Concerning"Predator"Preference"Change."........."27"
Chapter"2:"Further"Study"of"the"Becks"et"al."Equations."........................................."30"
2.1."Introduction."................................................................................................."30"
2.2."Another"Model"Generalization."...................................................................."31"
2.3."Results."........................................................................................................."33"
2.4."Conclusions.".................................................................................................."38"
2.5."References."..................................................................................................."38"
Chapter"3.""Dimensionless"Forms"for"Equations"(1.10)."........................................."40"
3.1."Introduction."................................................................................................."40"
3.2."Dimensionless"Formulation."........................................................................."40"
3.3."Example"Solution"to"the"Dimensionless"Equations."....................................."44"
3.4."Results"and"Discussion."................................................................................"44"
3.5."References."..................................................................................................."51"
Chapter"4:""How"Might"Information"Theory"Relate"to"Chaotic"Dynamics"in"
Biological"Systems?"................................................................................................"52"
4.1."Introduction."................................................................................................."52"
4.2."Interpretation"of"Shannon’s"Measure."........................................................."53"
4.3."The"concept"of"Redundancy."........................................................................"58"
4.4."What"About"Continuous"Probability"Densities?"..........................................."62"
4.5."Calculation"of"Chaotic"Information"Measures."............................................."64"
4.6."Summary"and"Future"Research"Suggestions."..............................................."70"
4.7."References."..................................................................................................."74"
"
"

3"
"
!"#$%!&$'(
The$main$objective$of$this$report$is$to$develop$an$exploratory$mathematical$
analysis$motivated$by$the$Becks$et$al.$(2005)$experiments,$which$will$be$
presented$in$Chapter$1.$$Related$details$of$the$resulting$model$will$be$
presented$in$Chapter$2,$and$a$detailed$non-dimensionalization$will$follow$in$
Chapter$3.$$During$the$research$to$be$described,$a$potential$relationship$to$
Shannon$information$theory$was$realized,$and$this$will$be$developed$in$
Chapter$4.$$Several$avenues$for$future$research$are$suggested,$and$a$more$
mathematically-oriented$presentation$of$the$non-linear$dynamical$properties$
of$the$equations$developed$in$Chapter$1$may$be$found$in$Faybishenko$et$al.$
(2018).$$
"
"" "

4"
"
&)*+,-.(/0(1*,)-2*,34*5(!6*57838(9:(,)-("-4;8(-,(*5'(</==>?(@A+-.32-6,8'"
/'/'(B6 ,.9 C D4 ,396 ' (
$ Deterministic$chaotic$dynamics$in$biological$systems$has$not$received$as$
much$attention$as$that$in$electronic$or$fluid-mechanical$systems,$and$
mathematical$models$are$at$an$early$stage$of$development$(Faybishenko$and$
Molz$(2013).$$However,$this$has$started$to$change.$$Molz$and$Faybishenko$
(2013)$have$recently$concluded $that$three $pape rs$(Bec ks$et$al,$2005 ;$Graham $
et$al.$2007;$Beninca$et$al.,$2008),$using$experimental$studies$and$relevant$
mathematics,$may$provide$convincing$demonstrations$that$deterministic$
chaos$is$present$in$relatively$simple$biochemical$systems$of$an$ecological$
nature.$(See$Constantino$et$al.,$1997$for$additional$support.)$$For$example,$
Graham$et$al.$(2007)$reported$experimental$results$demonstrating$the$
phenomenon$of$chaotic$instability$in$biological$nitrification$in$a$controlled$
laboratory$environment.$$In$this$study,$the$aerob ic$biorea ctors$(ae rated $
containers$of$nutrient$solution$and$microbes)$were$filled$initially$with$a$
mixture$of$wastewater$from$a$treatment$plant$and$simulated$wastewater$
involving$a$mixt ur e$o f$m a n y$m ic rob e s.$T h e$m a in $v ar ia bl es $re cor d ed $a s$a $time$
series$were$total$bacteria,$ammonia-oxidizing$bacteria$(AOB),$nitrite-oxidizing$
bacteria$(NOB),$and$protozoa,$along$with$effluent$concentrations$of$nitrate,$
nitrite$and$total$ammonia.$$The$method$of$Rosenstein$et$al.$(1993)$was$used$to$
calculate$Lyapunov$exponents,$which$fell$roughly$in$a$range$from$0.05$to$$
0.2$d
-1
.$$Graham$et$al .$(2 0 0 7) $co n cl u d ed $th a t $“n itr ifica tio n $is $p ro n e$t o$c h a ot ic$
behavior$because$of$a$fragile$AOB-NOB$mutualism,”$i.e.,$interaction.$
$ Beninca$et$al.$(2008)$conducted$a$laboratory$experiment$over$a$period$$
$
$

Citations
More filters
Dissertation

Thermodynamics of information processing in small systems

貴大 沙川
TL;DR: In this paper, a unified proof of the Second Law of Thermodynamics with feedback control is presented, and nonequilibrium Equalities with Feedback Control is shown to be equivalent to feedback control.
Journal ArticleDOI

Mathematical analysis of laboratory microbial experiments demonstrating deterministic chaotic dynamics.

TL;DR: The mathematical model demonstrated that the occurrence of chaotic dynamics requires a predator, p, preference for r versus c to increase significantly with increases in r and c populations, leading to a modified version of the Monod kinetics model.
References
More filters
Book ChapterDOI

Nonlinear Dynamics Simulations of Microbial Ecological Processes: Model, Diagnostic Parameters of Deterministic Chaos, and Sensitivity Analysis

TL;DR: In this article, a nonlinear dynamics model of microbial populations, consisting of a 4-variable system of coupled ordinary differential equations, was designed to simulate the temporal behavior of a microbiological system containing a nutrient, two feeding microbes and a microbe predator.
Frequently Asked Questions (2)
Q1. What are the contributions mentioned in the paper "A broad exploration of coupled nonlinear dynamics in microbial systems motivated by chemostat experiments producing deterministic chaos" ?

Ben-Naim et al. this paper proposed Shannon 's measure of uncertainty ( SMU ) for deterministic chaotic dynamics. 

The potential relation of chaotic dynamics to the appropriate information flows, being careful of what “ information ” actually means in an ecological context, appears very interesting, and it should be considered as a prime area for future research.