scispace - formally typeset
Journal ArticleDOI

A carbon nanotube strain sensor for structural health monitoring

Reads0
Chats0
TLDR
In this paper, a biomimetic artificial neuron was developed by extending the length of the sensor, which is a long continuous strain sensor that has a low cost, is simple to install and is lightweight.
Abstract
A carbon nanotube polymer material was used to form a piezoresistive strain sensor for structural health monitoring applications. The polymer improves the interfacial bonding between the nanotubes. Previous single walled carbon nanotube buckypaper sensors produced distorted strain measurements because the van der Waals attraction force allowed axial slipping of the smooth surfaces of the nanotubes. The polymer sensor uses larger multi-walled carbon nanotubes which improve the strain transfer, repeatability and linearity of the sensor. An electrical model of the nanotube strain sensor was derived based on electrochemical impedance spectroscopy and strain testing. The model is useful for designing nanotube sensor systems. A biomimetic artificial neuron was developed by extending the length of the sensor. The neuron is a long continuous strain sensor that has a low cost, is simple to install and is lightweight. The neuron has a low bandwidth and adequate strain sensitivity. The neuron sensor is particularly useful for detecting large strains and cracking, and can reduce the number of channels of data acquisition needed for the health monitoring of large structures.

read more

Citations
More filters
Journal ArticleDOI

Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review

TL;DR: In this article, the authors present recent advancements in the development of flexible and stretchable strain sensors, including skin-mountable and wearable strain sensors for personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth.
Journal ArticleDOI

Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite

TL;DR: The applicability of the high performance strain sensors based on the nanocomposite of silver nanowire network and PDMS elastomer in the form of the sandwich structure is demonstrated by fabricating a glove integrated with five strain sensors for the motion detection of fingers and control of an avatar in the virtual environment.
Journal ArticleDOI

Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

TL;DR: The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed.
Journal ArticleDOI

A review of fabrication and applications of carbon nanotube film-based flexible electronics

TL;DR: There are a number of challenges yet to overcome to optimize the processing and performance of CNT-based flexible electronics; nonetheless, CNTs remain a highly suitable candidate for various flexible electronic applications in the near future.
Journal ArticleDOI

Sensors and actuators based on carbon nanotubes and their composites: A review

TL;DR: In this paper, a review of the recent advances in nanotubes and nanotube-based composite sensors and actuators, with a particular emphasis on their electromechanical behavior is presented.
References
More filters
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Book

Science of fullerenes and carbon nanotubes

TL;DR: In this paper, the authors present a detailed overview of the properties of Fullerenes and their properties in surface science applications, such as scanning tunnel microscopy, growth and fragmentation studies, and chemical synthesis.
Journal ArticleDOI

Extreme oxygen sensitivity of electronic properties of carbon nanotubes

TL;DR: The results, although demonstrating that nanotubes could find use as sensitive chemical gas sensors, likewise indicate that many supposedly intrinsic properties measured on as-prepared nanotube may be severely compromised by extrinsic air exposure effects.
Related Papers (5)