scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Cartesian grid embedded boundary method for the heat equation on irregular domains

13 Nov 2001-Journal of Computational Physics (Academic Press Professional, Inc.)-Vol. 173, Iss: 2, pp 620-635
TL;DR: An algorithm for solving the heat equation on irregular time-dependent domains is presented, based on the Cartesian grid embedded boundary algorithm of Johansen and Colella, combined with a second-order accurate discretization of the time derivative.
About: This article is published in Journal of Computational Physics.The article was published on 2001-11-13 and is currently open access. It has received 161 citations till now. The article focuses on the topics: Mixed boundary condition & Boundary (topology).

Summary (1 min read)

Jump to: [1. INTRODUCTION] and [FIG. 1.]

1. INTRODUCTION

  • For the time discretization, for the fixed-boundary problem the authors use either the Crank-Nicolson method or the method of Twizell, Gumel and Arigu (TGA) [10] .
  • The authors algorithm is stable and achieves second-order accuracy both on problems with fixed domain and on problems with a time-dependent domain (t) with boundaries moving with constant velocities.

FIG. 1.

  • Centers of cells in (t old ) are shown with solid circles, and centers of cells in (tnew) -(t old ) are shown with unfilled circles.
  • The authors solve (19) numerically on a rectangular domain with three elliptically-shaped holes, with boundary conditions computed using the exact solution (18).
  • In the moving-boundary problem, the holes move with constant velocities.
  • With both fixed and moving boundaries, the authors solve two separate problems with different boundary conditions: Dirichlet conditions on all boundaries; Dirichlet conditions on the fixed external boundaries, but Neumann conditions on the boundaries of the ellipses.

Did you find this useful? Give us your feedback

Figures (15)
Citations
More filters
Journal ArticleDOI
TL;DR: A simple method for capturing the boundary conditions across the multigrid hierarchy, based on a second-order accurate reconstruction of the boundaries of theMultigrid levels, was successfully implemented on distributed memory architectures in the RAMSES code.

153 citations


Cites background from "A Cartesian grid embedded boundary ..."

  • ...This approach has also led to the development of sophisticated Poisson solvers, some relying on multigrid acceleration [10, 18]....

    [...]

  • ...[18] proposed to keep track of the boundary representation at the fine level, and modify the Laplacian on coarse grids, whenever the operator stencil crossed this fine boundary....

    [...]

Journal ArticleDOI
TL;DR: A fixed-mesh algorithm for simulating flow-structure interactions such as those occurring in biological systems, in which both the fluid and solid are incompressible and the solid deformations are large, is proposed and a new projection method is developed that unifies the transfer of the surface and body forces in a way that exactly conserves momentum.

151 citations

Journal ArticleDOI
TL;DR: The design of software abstractions for general AMR data management and parallel communication operations in SAMRAI, an object-oriented C++ structured AMR (SAMR) library developed at Lawrence Livermore National Laboratory (LLNL).
Abstract: Adaptive mesh refinement (AMR) is an increasingly important simulation methodology for many science and engineering problems. AMR has the potential to generate highly resolved simulations efficiently by dynamically refining the computational mesh near key numerical solution features. AMR requires more complex numerical algorithms and programming than uniform fixed mesh approaches. Software libraries that provide general AMR functionality can ease these burdens significantly. A major challenge for library developers is to achieve adequate flexibility to meet diverse and evolving application requirements. In this paper, we describe the design of software abstractions for general AMR data management and parallel communication operations in SAMRAI, an object-oriented C++ structured AMR (SAMR) library developed at Lawrence Livermore National Laboratory (LLNL). The SAMRAI infrastructure provides the foundation for a variety of diverse application codes at LLNL and elsewhere. We illustrate SAMRAI functionality by describing how its unique features are used in these codes which employ complex data structures and geometry. We highlight capabilities for moving and deforming meshes, coupling multiple SAMR mesh hierarchies, and immersed and embedded boundary methods for modeling complex geometrical features. We also describe how irregular data structures, such as particles and internal mesh boundaries, may be implemented using SAMRAI tools without excessive application programmer effort.

149 citations

Journal ArticleDOI
TL;DR: Several ways to impose Dirichlet, Robin or Neumann boundary conditions on a spread immersed interface, without locally modifying the numerical scheme and without using Lagrange multipliers are described.

148 citations


Cites methods from "A Cartesian grid embedded boundary ..."

  • ...For example, the following methods can be found in this group: truncated domains methods [6,7], immersed interface methods (I....

    [...]

Journal ArticleDOI
TL;DR: A Cartesian grid method with adaptive mesh refinement and multigrid acceleration is presented for the compressible Navier–Stokes equations and a new multilevel concept for this application is introduced.

138 citations


Cites methods from "A Cartesian grid embedded boundary ..."

  • ...In this context, multigrid has been applied to solve the Euler equations [13], the heat equation [14,15], and the Poisson equation for incompressible flows [12,16,15]....

    [...]

References
More filters
Journal ArticleDOI

40,330 citations


Additional excerpts

  • ...Similar approaches based on formally inconsistent discretizations at the irregular boundary have been used previously and observed to be stable [1, 9], so we expect that the extension to the more accurate boundary discretization should be straightforward....

    [...]

Book
07 Jan 2013
TL;DR: In this article, Leray-Schauder and Harnack this article considered the Dirichlet Problem for Poisson's Equation and showed that it is a special case of Divergence Form Operators.
Abstract: Chapter 1. Introduction Part I: Linear Equations Chapter 2. Laplace's Equation 2.1 The Mean Value Inequalities 2.2 Maximum and Minimum Principle 2.3 The Harnack Inequality 2.4 Green's Representation 2.5 The Poisson Integral 2.6 Convergence Theorems 2.7 Interior Estimates of Derivatives 2.8 The Dirichlet Problem the Method of Subharmonic Functions 2.9 Capacity Problems Chapter 3. The Classical Maximum Principle 3.1 The Weak Maximum Principle 3.2 The Strong Maximum Principle 3.3 Apriori Bounds 3.4 Gradient Estimates for Poisson's Equation 3.5 A Harnack Inequality 3.6 Operators in Divergence Form Notes Problems Chapter 4. Poisson's Equation and Newtonian Potential 4.1 Holder Continuity 4.2 The Dirichlet Problem for Poisson's Equation 4.3 Holder Estimates for the Second Derivatives 4.4 Estimates at the Boundary 4.5 Holder Estimates for the First Derivatives Notes Problems Chapter 5. Banach and Hilbert Spaces 5.1 The Contraction Mapping 5.2 The Method of Cintinuity 5.3 The Fredholm Alternative 5.4 Dual Spaces and Adjoints 5.5 Hilbert Spaces 5.6 The Projection Theorem 5.7 The Riesz Representation Theorem 5.8 The Lax-Milgram Theorem 5.9 The Fredholm Alternative in Hilbert Spaces 5.10 Weak Compactness Notes Problems Chapter 6. Classical Solutions the Schauder Approach 6.1 The Schauder Interior Estimates 6.2 Boundary and Global Estimates 6.3 The Dirichlet Problem 6.4 Interior and Boundary Regularity 6.5 An Alternative Approach 6.6 Non-Uniformly Elliptic Equations 6.7 Other Boundary Conditions the Obliue Derivative Problem 6.8 Appendix 1: Interpolation Inequalities 6.9 Appendix 2: Extension Lemmas Notes Problems Chapter 7. Sobolev Spaces 7.1 L^p spaces 7.2 Regularization and Approximation by Smooth Functions 7.3 Weak Derivatives 7.4 The Chain Rule 7.5 The W^(k,p) Spaces 7.6 DensityTheorems 7.7 Imbedding Theorems 7.8 Potential Estimates and Imbedding Theorems 7.9 The Morrey and John-Nirenberg Estimes 7.10 Compactness Results 7.11 Difference Quotients 7.12 Extension and Interpolation Notes Problems Chapter 8 Generalized Solutions and Regularity 8.1 The Weak Maximum Principle 8.2 Solvability of the Dirichlet Problem 8.3 Diferentiability of Weak Solutions 8.4 Global Regularity 8.5 Global Boundedness of Weak Solutions 8.6 Local Properties of Weak Solutions 8.7 The Strong Maximum Principle 8.8 The Harnack Inequality 8.9 Holder Continuity 8.10 Local Estimates at the Boundary 8.11 Holder Estimates for the First Derivatives 8.12 The Eigenvalue Problem Notes Problems Chapter 9. Strong Solutions 9.1 Maximum Princiles for Strong Solutions 9.2 L^p Estimates: Preliminary Analysis 9.3 The Marcinkiewicz Interpolation Theorem 9.4 The Calderon-Zygmund Inequality 9.5 L^p Estimates 9.6 The Dirichlet Problem 9.7 A Local Maximum Principle 9.8 Holder and Harnack Estimates 9.9 Local Estimates at the Boundary Notes Problems Part II: Quasilinear Equations Chapter 10. Maximum and Comparison Principles 10.1 The Comparison Principle 10.2 Maximum Principles 10.3 A Counterexample 10.4 Comparison Principles for Divergence Form Operators 10.5 Maximum Principles for Divergence Form Operators Notes Problems Chapter 11. Topological Fixed Point Theorems and Their Application 11.1 The Schauder Fixes Point Theorem 11.2 The Leray-Schauder Theorem: a Special Case 11.3 An Application 11.4 The Leray-Schauder Fixed Point Theorem 11.5 Variational Problems Notes Chapter 12. Equations in Two Variables 12.1 Quasiconformal Mappings 12.2 holder Gradient Estimates for Linear Equations 12.3 The Dirichlet Problem for Uniformly Elliptic Equations 12.4 Non-Uniformly Elliptic Equations Notes Problems Chapter 13. Holder Estimates for

18,443 citations

Book ChapterDOI
01 Jan 1997
TL;DR: In this paper, a class of partial differential equations that generalize and are represented by Laplace's equation was studied. And the authors used the notation D i u, D ij u for partial derivatives with respect to x i and x i, x j and the summation convention on repeated indices.
Abstract: We study in this chapter a class of partial differential equations that generalize and are to a large extent represented by Laplace’s equation. These are the elliptic partial differential equations of second order. A linear partial differential operator L defined by $$ Lu{\text{: = }}{a_{ij}}\left( x \right){D_{ij}}u + {b_i}\left( x \right){D_i}u + c\left( x \right)u $$ is elliptic on Ω ⊂ ℝ n if the symmetric matrix [a ij ] is positive definite for each x ∈ Ω. We have used the notation D i u, D ij u for partial derivatives with respect to x i and x i , x j and the summation convention on repeated indices is used. A nonlinear operator Q, $$ Q\left( u \right): = {a_{ij}}\left( {x,u,Du} \right){D_{ij}}u + b\left( {x,u,Du} \right) $$ [D u = (D 1 u, ..., D n u)], is elliptic on a subset of ℝ n × ℝ × ℝ n ] if [a ij (x, u, p)] is positive definite for all (x, u, p) in this set. Operators of this form are called quasilinear. In all of our examples the domain of the coefficients of the operator Q will be Ω × ℝ × ℝ n for Ω a domain in ℝ n . The function u will be in C 2(Ω) unless explicitly stated otherwise.

8,299 citations


"A Cartesian grid embedded boundary ..." refers background in this paper

  • ...However, it is well known that, for any domain with smooth boundary, a smooth function can be extended to all of R with a bound on the relative increase in the C norms that depends only on the domain and (k; ) [5]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a second-order projection method for the Navier-Stokes equations is proposed, which uses a specialized higher-order Godunov method for differencing the nonlinear convective terms.

1,287 citations


"A Cartesian grid embedded boundary ..." refers methods in this paper

  • ...The method described here, together with that in [6] for elliptic PDEs and [8] for hyperbolic PDEs, provide the fundamental components required for developing second-order accurate methods for a broad range of continuum mechanics problems in irregular geometries based on the predictor–corrector approach in [2]....

    [...]

Journal ArticleDOI
TL;DR: A numerical method for solving Poisson's equation, with variable coefficients and Dirichlet boundary conditions, on two-dimensional regions using a finite-volume discretization, which embeds the domain in a regular Cartesian grid.

470 citations


"A Cartesian grid embedded boundary ..." refers background or methods in this paper

  • ...As in previous work on elliptic problems [6], our approach uses a finite-volume discretization, which embeds the domain in a regular Cartesian grid....

    [...]

  • ...We follow the approach described in [6, 7]....

    [...]

  • ...With Dirichlet boundary conditions as from (3), we compute an estimate of ∂ψ ∂n by interpolating from the grid values and the values at the boundaries; for details, see [6]....

    [...]

  • ...The method described here, together with that in [6] for elliptic PDEs and [8] for hyperbolic PDEs, provide the fundamental components required for developing second-order accurate methods for a broad range of continuum mechanics problems in irregular geometries based on the predictor–corrector approach in [2]....

    [...]

  • ...This is routine for the case in which the embedded boundary is contained in the finest level of refinement [6], but requires some additional discretization design when the embedded boundary crosses coarse–fine interfaces....

    [...]

Frequently Asked Questions (1)
Q1. What are the contributions mentioned in the paper "A cartesian grid embedded boundary method for the heat equation on irregular domains" ?

The authors present an algorithm for solving the heat equation on irregular time-dependent domains.