scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Cartesian grid embedded boundary method for the heat equation on irregular domains

13 Nov 2001-Journal of Computational Physics (Academic Press Professional, Inc.)-Vol. 173, Iss: 2, pp 620-635
TL;DR: An algorithm for solving the heat equation on irregular time-dependent domains is presented, based on the Cartesian grid embedded boundary algorithm of Johansen and Colella, combined with a second-order accurate discretization of the time derivative.
About: This article is published in Journal of Computational Physics.The article was published on 2001-11-13 and is currently open access. It has received 161 citations till now. The article focuses on the topics: Mixed boundary condition & Boundary (topology).

Summary (1 min read)

Jump to: [1. INTRODUCTION] and [FIG. 1.]

1. INTRODUCTION

  • For the time discretization, for the fixed-boundary problem the authors use either the Crank-Nicolson method or the method of Twizell, Gumel and Arigu (TGA) [10] .
  • The authors algorithm is stable and achieves second-order accuracy both on problems with fixed domain and on problems with a time-dependent domain (t) with boundaries moving with constant velocities.

FIG. 1.

  • Centers of cells in (t old ) are shown with solid circles, and centers of cells in (tnew) -(t old ) are shown with unfilled circles.
  • The authors solve (19) numerically on a rectangular domain with three elliptically-shaped holes, with boundary conditions computed using the exact solution (18).
  • In the moving-boundary problem, the holes move with constant velocities.
  • With both fixed and moving boundaries, the authors solve two separate problems with different boundary conditions: Dirichlet conditions on all boundaries; Dirichlet conditions on the fixed external boundaries, but Neumann conditions on the boundaries of the ellipses.

Did you find this useful? Give us your feedback

Figures (15)
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the optimal local truncation error method (OLTEM) with unfitted Cartesian meshes is extended to a more complex case of a system of the elastodynamics PDEs.
Abstract: The optimal local truncation error method (OLTEM) with unfitted Cartesian meshes recently developed for the scalar wave and heat equations for heterogeneous materials is extended to a more complex case of a system of the elastodynamics PDEs. Compact 9-point stencils (similar to those for linear finite elements) are used for OLTEM. Compared to our previous results, a new approach is used for the calculation of the right-hand side of the stencil equations due to body forces. It significantly simplifies the analytical derivations of OLTEM for time-dependent problems. There are no unknowns on interfaces between different materials; the structure of the global semi-discrete equations for OLTEM is the same for homogeneous and heterogeneous materials. For the first time we have also developed OLTEM with the diagonal mass matrix. In contrast to many known approaches with some ad-hoc calculations of the diagonal mass matrix, OLTEM offers a rigorous approach which is a particular case of OLTEM with the non-diagonal mass matrix.Another novelty of the article is a new post-processing procedure for the accurate calculations of stresses. It includes the same compact 9-point stencils as those in basic computations and uses the accelerations and the displacements at the grid points along with the PDEs for the stress calculations.OLTEM yields accurate numerical results for heterogeneous materials with big contrasts in the material properties of different components. Numerical experiments for elastic heterogeneous materials show: a) at the same number of degrees of freedom (dof), OLTEM with unfitted Cartesian meshes is more accurate than linear finite elements with similar stencils and conformed meshes; at the engineering accuracy of 0.1% for the displacements, OLTEM reduces the number of dof by more than 20 times; at the engineering accuracy of 0.1% for the stresses, OLTEM with the new post-processing procedure reduces the number of dof by more than 104 times compared to linear finite elements; b) at the same number of dof, OLTEM with unfitted Cartesian meshes is even more computationally efficient than high-order finite elements with much wider stencils and conformed meshes. This will lead to a huge reduction in the computation time for elastodynamics problems solved by OLTEM and will allow the direct computations of some complex wave propagation and structural dynamics problems for heterogeneous materials without the scale separation.

1 citations

Journal ArticleDOI
TL;DR: Rajput et al. as discussed by the authors derived the stability condition over an elliptical domain with the non-uniform step size depending upon the boundary tracing function by using Von Neumann method and the corresponding stability range for number of nodes N=10, 20, 30, 40, 50, and 60 was found respectively.
Abstract: Aims: The aim and objective of the study to derive and analyze the stability of the finite difference schemes in relation to the irregularity of domain. Study Design: First of all, an elliptical domain has been constructed with the governing two dimensional (2D) heat equation that is discretized using the Finite Difference Method (FDM). Then the stability condition has been defined and the numerical solution by writing MATLAB codes has been obtained with the stable values of time domain. Place and Duration of Study: The work has been jointly conducted at the MUET, Jamshoro and QUEST, Nawabshah Pakistan from January 2019 to December 2019. Methodology: The stability condition over an elliptical domain with the non-uniform step size depending upon the boundary tracing function is derived by using Von Neumann method. Original Research Article Rajput et al.; ARJOM, 16(3): 8-19, 2020; Article no.ARJOM.54909 9 Results: From the results it was revealed that stability region for the small number of mesh points remains larger and gets smaller as the number of mesh nodes is increased. Moreover, the ranges for the time steps are defined for varied spatial step sizes that help to find the stable solution. Conclusion: The corresponding stability range for number of nodes N=10, 20, 30, 40, 50, and 60 was found respectively. Within this range the solution remains smooth as time increases. The results of this study attempt to provide the stable solution of partial differential equations on irregular domains.

1 citations


Cites methods from "A Cartesian grid embedded boundary ..."

  • ...In this regard [4] and [5] have investigated a finite difference scheme for solving the variable coefficient Poisson and heat equations on irregular domains with Dirichlet boundary conditions....

    [...]

01 Jan 2010
TL;DR: In this article, Wu et al. performed three-dimensional simulations of the formation and implosion of plasma liners for the plasma jet-induced magneto-inertial fusion (PJMIF) using multiscale simulation technique based on the FronTier code.
Abstract: of the Dissertation Simulation studies of hydrodynamic aspects of magneto-inertial fusion and high order adaptive algorithms for Maxwell equations by Lingling Wu Doctor of Philosophy in Applied Mathematics and Statistics Stony Brook University 2010 Three-dimensional simulations of the formation and implosion of plasma liners for the Plasma Jet Induced Magneto Inertial Fusion (PJMIF) have been performed using multiscale simulation technique based on the FronTier code. In the PJMIF concept, a plasma liner, formed by merging of a large number of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the nuclear fusion ignition. The propagation of a single jet with Mach number 60 from the plasma gun to the merging point was studied using the FronTier code. The simulation result was used as input to the 3D jet merger problem. The merger of 144, 125, and 625 jets and the formation and heating of plasma liner by compression waves have been studied and compared with recent theoretical predictions. The main result of the study is the prediction of the average iii Mach number reduction and the description of the liner structure and properties. We have also compared the effect of different merging radii. Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets have also been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, On the efficacy of imploding plasma liners for magnetized fusion target compression, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium tritium targets compressed by Mach 60 deuterium liners. In the most optimal setup for a given chamber size that contained a target with the initial radius of 20 cm compressed by 10 cm thick, Mach 60 xenon liner, the target ignition and fusion energy gain of 10 was achieved. Simulations also showed that composite deuterium xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated. The study of the dependence of the ram pressure amplification on radial compressibility showed a good agreement with the theory. The study concludes that a liner with higher Mach number and lower adiabatic index gamma (the radio of specific heats) will generate higher ram pressure amplification and higher fusion energy gain. We implemented a second order embedded boundary method for the Maxwell equations in geometrically complex domains. The numerical scheme is second order in both space and time. Comparing to the first order stair-step approximation of complex geometries within the FDTD method, this method can avoid spurious solution introduced by the stair step approximation. Unlike the finite element method and the FE-FD hybrid method, no triangulation is needed for this scheme. This iv method preserves the simplicity of the embedded boundary method and it is easy to implement. We will also propose a conservative (symplectic) fourth order scheme for uniform geometry boundary.

1 citations


Cites methods from "A Cartesian grid embedded boundary ..."

  • ...1 Embedded Boudary Method in FronTier Embedded boundary method is a conservative finite volume discretization for elliptic and parabolic equations [9], [16], [17]....

    [...]

References
More filters
Journal ArticleDOI

40,330 citations


Additional excerpts

  • ...Similar approaches based on formally inconsistent discretizations at the irregular boundary have been used previously and observed to be stable [1, 9], so we expect that the extension to the more accurate boundary discretization should be straightforward....

    [...]

Book
07 Jan 2013
TL;DR: In this article, Leray-Schauder and Harnack this article considered the Dirichlet Problem for Poisson's Equation and showed that it is a special case of Divergence Form Operators.
Abstract: Chapter 1. Introduction Part I: Linear Equations Chapter 2. Laplace's Equation 2.1 The Mean Value Inequalities 2.2 Maximum and Minimum Principle 2.3 The Harnack Inequality 2.4 Green's Representation 2.5 The Poisson Integral 2.6 Convergence Theorems 2.7 Interior Estimates of Derivatives 2.8 The Dirichlet Problem the Method of Subharmonic Functions 2.9 Capacity Problems Chapter 3. The Classical Maximum Principle 3.1 The Weak Maximum Principle 3.2 The Strong Maximum Principle 3.3 Apriori Bounds 3.4 Gradient Estimates for Poisson's Equation 3.5 A Harnack Inequality 3.6 Operators in Divergence Form Notes Problems Chapter 4. Poisson's Equation and Newtonian Potential 4.1 Holder Continuity 4.2 The Dirichlet Problem for Poisson's Equation 4.3 Holder Estimates for the Second Derivatives 4.4 Estimates at the Boundary 4.5 Holder Estimates for the First Derivatives Notes Problems Chapter 5. Banach and Hilbert Spaces 5.1 The Contraction Mapping 5.2 The Method of Cintinuity 5.3 The Fredholm Alternative 5.4 Dual Spaces and Adjoints 5.5 Hilbert Spaces 5.6 The Projection Theorem 5.7 The Riesz Representation Theorem 5.8 The Lax-Milgram Theorem 5.9 The Fredholm Alternative in Hilbert Spaces 5.10 Weak Compactness Notes Problems Chapter 6. Classical Solutions the Schauder Approach 6.1 The Schauder Interior Estimates 6.2 Boundary and Global Estimates 6.3 The Dirichlet Problem 6.4 Interior and Boundary Regularity 6.5 An Alternative Approach 6.6 Non-Uniformly Elliptic Equations 6.7 Other Boundary Conditions the Obliue Derivative Problem 6.8 Appendix 1: Interpolation Inequalities 6.9 Appendix 2: Extension Lemmas Notes Problems Chapter 7. Sobolev Spaces 7.1 L^p spaces 7.2 Regularization and Approximation by Smooth Functions 7.3 Weak Derivatives 7.4 The Chain Rule 7.5 The W^(k,p) Spaces 7.6 DensityTheorems 7.7 Imbedding Theorems 7.8 Potential Estimates and Imbedding Theorems 7.9 The Morrey and John-Nirenberg Estimes 7.10 Compactness Results 7.11 Difference Quotients 7.12 Extension and Interpolation Notes Problems Chapter 8 Generalized Solutions and Regularity 8.1 The Weak Maximum Principle 8.2 Solvability of the Dirichlet Problem 8.3 Diferentiability of Weak Solutions 8.4 Global Regularity 8.5 Global Boundedness of Weak Solutions 8.6 Local Properties of Weak Solutions 8.7 The Strong Maximum Principle 8.8 The Harnack Inequality 8.9 Holder Continuity 8.10 Local Estimates at the Boundary 8.11 Holder Estimates for the First Derivatives 8.12 The Eigenvalue Problem Notes Problems Chapter 9. Strong Solutions 9.1 Maximum Princiles for Strong Solutions 9.2 L^p Estimates: Preliminary Analysis 9.3 The Marcinkiewicz Interpolation Theorem 9.4 The Calderon-Zygmund Inequality 9.5 L^p Estimates 9.6 The Dirichlet Problem 9.7 A Local Maximum Principle 9.8 Holder and Harnack Estimates 9.9 Local Estimates at the Boundary Notes Problems Part II: Quasilinear Equations Chapter 10. Maximum and Comparison Principles 10.1 The Comparison Principle 10.2 Maximum Principles 10.3 A Counterexample 10.4 Comparison Principles for Divergence Form Operators 10.5 Maximum Principles for Divergence Form Operators Notes Problems Chapter 11. Topological Fixed Point Theorems and Their Application 11.1 The Schauder Fixes Point Theorem 11.2 The Leray-Schauder Theorem: a Special Case 11.3 An Application 11.4 The Leray-Schauder Fixed Point Theorem 11.5 Variational Problems Notes Chapter 12. Equations in Two Variables 12.1 Quasiconformal Mappings 12.2 holder Gradient Estimates for Linear Equations 12.3 The Dirichlet Problem for Uniformly Elliptic Equations 12.4 Non-Uniformly Elliptic Equations Notes Problems Chapter 13. Holder Estimates for

18,443 citations

Book ChapterDOI
01 Jan 1997
TL;DR: In this paper, a class of partial differential equations that generalize and are represented by Laplace's equation was studied. And the authors used the notation D i u, D ij u for partial derivatives with respect to x i and x i, x j and the summation convention on repeated indices.
Abstract: We study in this chapter a class of partial differential equations that generalize and are to a large extent represented by Laplace’s equation. These are the elliptic partial differential equations of second order. A linear partial differential operator L defined by $$ Lu{\text{: = }}{a_{ij}}\left( x \right){D_{ij}}u + {b_i}\left( x \right){D_i}u + c\left( x \right)u $$ is elliptic on Ω ⊂ ℝ n if the symmetric matrix [a ij ] is positive definite for each x ∈ Ω. We have used the notation D i u, D ij u for partial derivatives with respect to x i and x i , x j and the summation convention on repeated indices is used. A nonlinear operator Q, $$ Q\left( u \right): = {a_{ij}}\left( {x,u,Du} \right){D_{ij}}u + b\left( {x,u,Du} \right) $$ [D u = (D 1 u, ..., D n u)], is elliptic on a subset of ℝ n × ℝ × ℝ n ] if [a ij (x, u, p)] is positive definite for all (x, u, p) in this set. Operators of this form are called quasilinear. In all of our examples the domain of the coefficients of the operator Q will be Ω × ℝ × ℝ n for Ω a domain in ℝ n . The function u will be in C 2(Ω) unless explicitly stated otherwise.

8,299 citations


"A Cartesian grid embedded boundary ..." refers background in this paper

  • ...However, it is well known that, for any domain with smooth boundary, a smooth function can be extended to all of R with a bound on the relative increase in the C norms that depends only on the domain and (k; ) [5]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a second-order projection method for the Navier-Stokes equations is proposed, which uses a specialized higher-order Godunov method for differencing the nonlinear convective terms.

1,287 citations


"A Cartesian grid embedded boundary ..." refers methods in this paper

  • ...The method described here, together with that in [6] for elliptic PDEs and [8] for hyperbolic PDEs, provide the fundamental components required for developing second-order accurate methods for a broad range of continuum mechanics problems in irregular geometries based on the predictor–corrector approach in [2]....

    [...]

Journal ArticleDOI
TL;DR: A numerical method for solving Poisson's equation, with variable coefficients and Dirichlet boundary conditions, on two-dimensional regions using a finite-volume discretization, which embeds the domain in a regular Cartesian grid.

470 citations


"A Cartesian grid embedded boundary ..." refers background or methods in this paper

  • ...As in previous work on elliptic problems [6], our approach uses a finite-volume discretization, which embeds the domain in a regular Cartesian grid....

    [...]

  • ...We follow the approach described in [6, 7]....

    [...]

  • ...With Dirichlet boundary conditions as from (3), we compute an estimate of ∂ψ ∂n by interpolating from the grid values and the values at the boundaries; for details, see [6]....

    [...]

  • ...The method described here, together with that in [6] for elliptic PDEs and [8] for hyperbolic PDEs, provide the fundamental components required for developing second-order accurate methods for a broad range of continuum mechanics problems in irregular geometries based on the predictor–corrector approach in [2]....

    [...]

  • ...This is routine for the case in which the embedded boundary is contained in the finest level of refinement [6], but requires some additional discretization design when the embedded boundary crosses coarse–fine interfaces....

    [...]

Frequently Asked Questions (1)
Q1. What are the contributions mentioned in the paper "A cartesian grid embedded boundary method for the heat equation on irregular domains" ?

The authors present an algorithm for solving the heat equation on irregular time-dependent domains.