scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity

TL;DR: This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments.
Abstract: Here, we report a catalytic beacon sensor for uranyl (UO22+) based on an in vitro-selected UO22+-specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3′ quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5′ and 3′ ends, respectively. The presence of UO22+ causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of ≈230 μM. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium.
Citations
More filters
Journal ArticleDOI
20 Mar 2008-Nature
TL;DR: Some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water are highlighted.
Abstract: One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.

6,967 citations

Journal ArticleDOI
TL;DR: The Hg(II) Detector simplifies the experimental setup by enabling a single amplifier to be switched between the Oligonucleotide-Based and DNAzyme-Based detectors.
Abstract: 9.2. Protein-Based Hg(II) Detectors 3467 9.3. Oligonucleotide-Based Hg(II) Detector 3467 9.4. DNAzyme-Based Hg(II) Detectors 3469 9.5. Antibody-Based Hg(II) Detector 3469 10. Mercury Detectors Based on Materials 3469 10.1. Soluble and Fluorescent Polymers 3469 10.2. Membranes, Films, and Fibers 3471 10.3. Micelles 3473 10.4. Nanoparticles 3473 11. Perspectives 3474 12. Addendum 3475 12.1. Small Molecules 3475 12.2. Biomolecules 3477 12.3. Materials 3477 13. List of Abbreviations 3477 14. Acknowledgments 3478 15. References 3478

2,139 citations

Journal ArticleDOI
TL;DR: Aptamers are ligand-binding nucleic acids whose affinities and selectivities can rival those of antibodies, and they are readily adapted to sequence- (and hence signal-) amplification methods.
Abstract: Aptamers are ligand-binding nucleic acids whose affinities and selectivities can rival those of antibodies. They have been adapted to analytical applications not only as alternatives to antibodies, but as unique reagents in their own right. In particular, aptamers can be readily site-specifically modified during chemical or enzymatic synthesis to incorporate particular reporters, linkers, or other moieties. Also, aptamer secondary structures can be engineered to undergo analyte-dependent conformational changes, which, in concert with the ability to specifically place chemical agents, opens up a wealth of possible signal transduction schemas, irrespective of whether the detection modality is optical, electrochemical, or mass based. Finally, because aptamers are nucleic acids, they are readily adapted to sequence- (and hence signal-) amplification methods. However, application of aptamers without a basic knowledge of their biochemistry or technical requirements can cause serious analytical difficulties.

733 citations

Journal ArticleDOI
TL;DR: The use of catalytic nucleic acids for amplified biosensing was accomplished by designing aptamer-DNAzyme conjugates that combine recognition units and amplifying readout units as in integrated biosensing materials.
Abstract: Catalytic nucleic acids (DNAzymes or ribozymes) are selected by the systematic evolution of ligands by exponential enrichment process (SELEX). The catalytic functions of DNAzymes or ribozymes allow their use as amplifying labels for the development of optical or electronic sensors. The use of catalytic nucleic acids for amplified biosensing was accomplished by designing aptamer–DNAzyme conjugates that combine recognition units and amplifying readout units as in integrated biosensing materials. Alternatively, “DNA machines” that activate enzyme cascades and yield DNAzymes were tailored, and the systems led to the ultrasensitive detection of DNA. DNAzymes are also used as active components for constructing nanostructures such as aggregated nanoparticles and for the activation of logic gate operations that perform computing.

714 citations

References
More filters
Journal ArticleDOI
TL;DR: The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large by making use of universally available web GUIs (Graphical User Interfaces).
Abstract: The abbreviated name,‘mfold web server’,describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces),the server circumvents the problem of portability of this software. Detailed output,in the form of structure plots with or without reliability information,single strand frequency plots and ‘energy dot plots’, are available for the folding of single sequences. A variety of ‘bulk’ servers give less information,but in a shorter time and for up to hundreds of sequences at once. The portal for the mfold web server is http://www.bioinfo.rpi.edu/applications/ mfold. This URL will be referred to as ‘MFOLDROOT’.

12,535 citations

Journal ArticleDOI
TL;DR: An algorithm is presented for the multiple alignment of sequences, either proteins or nucleic acids, that is both accurate and easy to use on microcomputers, based on the conventional dynamic-programming method of pairwise alignment.
Abstract: An algorithm is presented for the multiple alignment of sequences, either proteins or nucleic acids, that is both accurate and easy to use on microcomputers. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, a hierarchical clustering of the sequences is performed using the matrix of the pairwise alignment scores. The closest sequences are aligned creating groups of aligned sequences. Then close groups are aligned until all sequences are aligned in one group. The pairwise alignments included in the multiple alignment form a new matrix that is used to produce a hierarchical clustering. If it is different from the first one, iteration of the process can be performed. The method is illustrated by an example: a global alignment of 39 sequences of cytochrome c.

5,208 citations

Journal ArticleDOI
TL;DR: Novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions that undergo a spontaneous conforma-tional change when they hybridize to their targets are developed.
Abstract: We have developed novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions. These probes undergo a spontaneous fluorogenic conformational change when they hybridize to their targets. Only perfectly complementary targets elicit this response, as hybridization does not occur when the target contains a mismatched nucleotide or a deletion. The probes are particularly suited for monitoring the synthesis of specific nucleic acids in real time. When used in nucleic acid amplification assays, gene detection is homogeneous and sensitive, and can be carried out in a sealed tube. When introduced into living cells, these probes should enable the origin, movement, and fate of specific mRNAs to be traced.

4,584 citations

Journal ArticleDOI
TL;DR: An in vitro selection procedure was used to develop a DNA enzyme that can be made to cleave almost any targeted RNA substrate under simulated physiological conditions, and its activity is dependent on the presence of Mg2+ ion.
Abstract: An in vitro selection procedure was used to develop a DNA enzyme that can be made to cleave almost any targeted RNA substrate under simulated physiological conditions. The enzyme is comprised of a catalytic domain of 15 deoxynucleotides, flanked by two substrate-recognition domains of seven to eight deoxynucleotides each. The RNA substrate is bound through Watson–Crick base pairing and is cleaved at a particular phosphodiester located between an unpaired purine and a paired pyrimidine residue. Despite its small size, the DNA enzyme has a catalytic efficiency (kcat/Km) of ≈109 M−1⋅min−1 under multiple turnover conditions, exceeding that of any other known nucleic acid enzyme. Its activity is dependent on the presence of Mg2+ ion. By changing the sequence of the substrate-recognition domains, the DNA enzyme can be made to target different RNA substrates. In this study, for example, it was directed to cleave synthetic RNAs corresponding to the start codon region of HIV-1 gag/pol, env, vpr, tat, and nef mRNAs.

1,411 citations

Journal ArticleDOI
TL;DR: The concept developed here can be applied to the design of nucleic acid enzyme/nanoparticle sensors for analytes that are subject to in vitro selection, and thus can significantly expand the scope of nanomaterial applications and provide a novel approach to designing simple colorimetric biosensors.
Abstract: A highly sensitive and selective colorimetric lead biosensor based on DNAzyme-directed assembly of gold nanoparticles is reported. It consists of a DNAzyme and its substrate that can hybridize to a 5‘-thio-modified DNA attached to gold nanoparticles. The hybridization brings gold nanoparticles together, resulting in a blue-colored nanoparticle assembly. In the presence of lead, the DNAzyme catalyzes specific hydrolytic cleavage, which prevents the formation of the nanoparticle assembly, resulting in red-colored individual nanoparticles. The detection level can be tuned to several orders of magnitude, from 100 nM to over 200 μM, through addition of an inactive variant of the DNAzyme. The concept developed here can be applied to the design of nucleic acid enzyme/nanoparticle sensors for analytes that are subject to in vitro selection, and thus can significantly expand the scope of nanomaterial applications and provide a novel approach to designing simple colorimetric biosensors.

1,284 citations