scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries

02 Mar 2021-Journal of Materials Chemistry (The Royal Society of Chemistry)-Vol. 9, Iss: 8, pp 4734-4743
TL;DR: In this article, a Zn2+ substituted Nafion separator (Zn-Nafion) was used to improve the performance of both the cathode and anode.
Abstract: The widespread application of aqueous rechargeable zinc ion batteries (ARZIBs) is limited by issues from both electrodes, including poor reversibility of the zinc anode and low capacity of the cathode. Here, we report the application of a Zn2+ substituted Nafion separator (Zn-Nafion) in ARZIBs which improves the performance of both the cathode and anode. On the anode side, the Zn-Nafion separator creates a uniform electrical and Zn2+ concentration field near the zinc anode surface, resulting in limited zinc dendrite growth. Therefore, a Zn symmetric cell with a Zn-Nafion separator shows a lower polarization and longer cycle life than those applying a traditional glass fiber separator. On the cathode side, the Zn-Nafion separator increases the contribution of the H+ reaction in the H+/Zn2+ co-insertion process, and causes the randomly distributed byproducts, Zn4SO4(OH)6·nH2O platelets, to transform into a dense solid-electrolyte-interphase layer, which protects the cathode from dissolving into the electrolyte. Thus, the energy density and capacity retention of both zinc full cells (applying commercial V2O5 or α-MnO2 nanowires as the cathode) are dramatically improved by the Zn-Nafion separator. Notably, the Zn//Zn-Nafion//V2O5 cell delivers a high specific capacity of 495.8 mA h g−1 (374.4 W h kg−1) with a low cathode cost (39.23 US$ W h kg−1). Moreover, the Zn-Nafion separator can be recycled at least ten times without performance degradation, which significantly reduces the cost of the battery. The present work can provide a novel insight into cost-effective and high-performance battery technologies.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the role of water molecules in rechargeable aqueous Zn-ion batteries (AZIBs) has been discussed from the perspective of the electrolyte, Zn anode, and cathode materials.
Abstract: Benefiting from loose assembly conditions, a high level of safety and environmentally friendly characteristics, rechargeable aqueous Zn-ion batteries (AZIBs) have attracted significant attention. The electrochemical kinetics and performance of the AZIBs are greatly affected by water in electrolytes or electrode materials. The corrosion and passivation of the Zn electrode caused by the inevitable solvation process of water molecules can lead to the growth of dendrites, thus resulting in a limited cycle life. Moreover, water in the electrode material, whether in the form of structural water or co-intercalated hydrated cations, can greatly affect the electrochemical behavior due to its small size, high polarity and hydrogen bonding. Unlike previous reports, this review focuses on the roles of water molecules during electrochemical processes in AZIBs. We comprehensively summarize the influencing mechanisms of water molecules during the energy storage process from the perspectives of the electrolyte, Zn anode, and cathode materials, and further include the basic theory, modification methods, and practical applications. The mystery concerning the water molecules and the electrochemical performance of AZIBs is revealed herein, and we also propose novel insights and actionable methods regarding the potential future directions in the design of high-performance AZIBs.

176 citations

Journal ArticleDOI
TL;DR: In this paper, a cotton-derived cellulose film was used as the separator for aqueous zinc-ion batteries (Zn-MnO2), which can effectively inhibit zinc dendrites and harmful side reactions.

138 citations

Journal ArticleDOI
TL;DR: In this article , the authors employed cotton-derived cellulose film prepared by a facile filtration method as the separator for aqueous zinc-ion batteries (AZIBs).

124 citations

Journal ArticleDOI
TL;DR: In this paper , a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends is proposed to deeply comprehend the essence and inner connection of degradation mechanism and performance.
Abstract: The rapid advance of mild aqueous zinc-ion batteries (ZIBs) is driving the development of the energy storage system market. But the thorny issues of Zn anodes, mainly including dendrite growth, hydrogen evolution, and corrosion, severely reduce the performance of ZIBs. To commercialize ZIBs, researchers must overcome formidable challenges. Research about mild aqueous ZIBs is still developing. Various technical and scientific obstacles to designing Zn anodes with high stripping efficiency and long cycling life have not been resolved. Moreover, the performance of Zn anodes is a complex scientific issue determined by various parameters, most of which are often ignored, failing to achieve the maximum performance of the cell. This review proposes a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends to deeply comprehend the essence and inner connection of degradation mechanism and performance. First, the formation mechanism of dendrite growth, hydrogen evolution, corrosion, and their influence on the anode are analyzed. Furthermore, various strategies for constructing stable Zn anodes are summarized and discussed in detail from multiple perspectives. These strategies are mainly divided into interface modification, structural anode, alloying anode, intercalation anode, liquid electrolyte, non-liquid electrolyte, separator design, and other strategies. Finally, research directions and prospects are put forward for Zn anodes. This contribution highlights the latest developments and provides new insights into the advanced Zn anode for future research.

114 citations

Journal ArticleDOI
TL;DR: In this paper , a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends is proposed to deeply comprehend the essence and inner connection of degradation mechanism and performance.
Abstract: The rapid advance of mild aqueous zinc-ion batteries (ZIBs) is driving the development of the energy storage system market. But the thorny issues of Zn anodes, mainly including dendrite growth, hydrogen evolution, and corrosion, severely reduce the performance of ZIBs. To commercialize ZIBs, researchers must overcome formidable challenges. Research about mild aqueous ZIBs is still developing. Various technical and scientific obstacles to designing Zn anodes with high stripping efficiency and long cycling life have not been resolved. Moreover, the performance of Zn anodes is a complex scientific issue determined by various parameters, most of which are often ignored, failing to achieve the maximum performance of the cell. This review proposes a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends to deeply comprehend the essence and inner connection of degradation mechanism and performance. First, the formation mechanism of dendrite growth, hydrogen evolution, corrosion, and their influence on the anode are analyzed. Furthermore, various strategies for constructing stable Zn anodes are summarized and discussed in detail from multiple perspectives. These strategies are mainly divided into interface modification, structural anode, alloying anode, intercalation anode, liquid electrolyte, non-liquid electrolyte, separator design, and other strategies. Finally, research directions and prospects are put forward for Zn anodes. This contribution highlights the latest developments and provides new insights into the advanced Zn anode for future research.

99 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a highly reversible zinc/manganese oxide system in which optimal mild aqueous ZnSO4-based solution is used as the electrolyte, and nanofibres of a manganese oxide phase, α-MnO2, are used as a cathode.
Abstract: Rechargeable aqueous batteries such as alkaline zinc/manganese oxide batteries are highly desirable for large-scale energy storage owing to their low cost and high safety; however, cycling stability is a major issue for their applications. Here we demonstrate a highly reversible zinc/manganese oxide system in which optimal mild aqueous ZnSO4-based solution is used as the electrolyte, and nanofibres of a manganese oxide phase, α-MnO2, are used as the cathode. We show that a chemical conversion reaction mechanism between α-MnO2 and H+ is mainly responsible for the good performance of the system. This includes an operating voltage of 1.44 V, a capacity of 285 mAh g−1 (MnO2), and capacity retention of 92% over 5,000 cycles. The Zn metal anode also shows high stability. This finding opens new opportunities for the development of low-cost, high-performance rechargeable aqueous batteries. Rechargeable aqueous batteries are attractive owing to their relatively low cost and safety. Here the authors report an aqueous zinc/manganese oxide battery that operates via a conversion reaction mechanism and exhibits a long-term cycling stability.

1,965 citations

Journal ArticleDOI
TL;DR: In this article, a vanadium oxide bronze was used as the positive electrode for a Zn cell with reversible intercalation of Zn ions in a layered Zn0.25V2O5⋅nH2O-based positive electrode.
Abstract: Although non-aqueous Li-ion batteries possess significantly higher energy density than their aqueous counterparts, the latter can be more feasible for grid-scale applications when cost, safety and cycle life are taken into consideration. Moreover, aqueous Zn-ion batteries have an energy storage advantage over alkali-based batteries as they can employ Zn metal as the negative electrode, dramatically increasing energy density. However, their development is plagued by a limited choice of positive electrodes, which often show poor rate capability and inadequate cycle life. Here we report a vanadium oxide bronze pillared by interlayer Zn2+ ions and water (Zn0.25V2O5⋅nH2O), as the positive electrode for a Zn cell. A reversible Zn2+ ion (de)intercalation storage process at fast rates, with more than one Zn2+ per formula unit (a capacity up to 300 mAh g−1), is characterized. The Zn cell offers an energy density of ∼450 Wh l−1 and exhibits a capacity retention of more than 80% over 1,000 cycles, with no dendrite formation at the Zn electrode. High-performing positive electrode materials are crucial for the development of aqueous Zn-ion batteries. Here the authors report a battery based on reversible intercalation of Zn ions in a layered Zn0.25V2O5⋅nH2O-based positive electrode, which exhibits high-capacity and long-term cycling stability.

1,948 citations

Journal ArticleDOI
TL;DR: This work demonstrates that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address irreversibility issues and brings unprecedented flexibility and reversibility to Zn batteries.
Abstract: Metallic zinc (Zn) has been regarded as an ideal anode material for aqueous batteries because of its high theoretical capacity (820 mA h g–1), low potential (−0.762 V versus the standard hydrogen electrode), high abundance, low toxicity and intrinsic safety. However, aqueous Zn chemistry persistently suffers from irreversibility issues, as exemplified by its low coulombic efficiency (CE) and dendrite growth during plating/ stripping, and sustained water consumption. In this work, we demonstrate that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address these issues. This unique electrolyte not only enables dendrite-free Zn plating/stripping at nearly 100% CE, but also retains water in the open atmosphere, which makes hermetic cell configurations optional. These merits bring unprecedented flexibility and reversibility to Zn batteries using either LiMn2O4 or O2 cathodes—the former deliver 180 W h kg–1 while retaining 80% capacity for >4,000 cycles, and the latter deliver 300 W h kg–1 (1,000 W h kg–1 based on the cathode) for >200 cycles.

1,721 citations

Journal ArticleDOI
TL;DR: This Review evaluates the potential of a series of promising batteries and hydrogen fuel cells in their deployment in automotive electrification and identifies six energy storage and conversion technologies that possess varying combinations of these improved characteristics.
Abstract: Today’s electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome. Recent years have seen significant growth of electric vehicles and extensive development of energy storage technologies. This Review evaluates the potential of a series of promising batteries and hydrogen fuel cells in their deployment in automotive electrification.

1,706 citations