scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming

TL;DR: In this article, the authors used repeat photography, dendrochronological analysis, field observations along elevational transects and historical documents to study tree line dynamics in a sub-Arctic model area at different temporal and spatial scales.
Abstract: Aim Models project that climate warming will cause the tree line to move to higher elevations in alpine areas and more northerly latitudes in Arctic environments. We aimed to document changes or stability of the tree line in a sub-Arctic model area at different temporal and spatial scales, and particularly to clarify the ambiguity that currently exists about tree line dynamics and their causes. Location The study was conducted in the Tornetrask area in northern Sweden where climate warmed by 2.5 degrees C between 1913 and 2006. Mountain birch (Betula pubescens ssp. czerepanovii) sets the alpine tree line. Methods We used repeat photography, dendrochronological analysis, field observations along elevational transects and historical documents to study tree line dynamics. Results Since 1912, only four out of eight tree line sites had advanced: on average the tree line had shifted 24 m upslope (+0.2 m year-1 assuming linear shifts). Maximum tree line advance was +145 m (+1.5 m year-1 in elevation and +2.7 m year-1 in actual distance), whereas maximum retreat was 120 m downslope. Counter-intuitively, tree line advance was most pronounced during the cooler late 1960s and 1970s. Tree establishment and tree line advance were significantly correlated with periods of low reindeer (Rangifer tarandus) population numbers. A decreased anthropozoogenic impact since the early 20th century was found to be the main factor shaping the current tree line ecotone and its dynamics. In addition, episodic disturbances by moth outbreaks and geomorphological processes resulted in descent and long-term stability of the tree line position, respectively. Main conclusions In contrast to what is generally stated in the literature, this study shows that in a period of climate warming, disturbance may not only determine when tree line advance will occur but if tree line advance will occur at all. In the case of non-climatic climax tree lines, such as those in our study area, both climate-driven model projections of future tree line positions and the use of the tree line position for bioclimatic monitoring should be used with caution.

Summary (1 min read)

A century of tree line changes in sub-Arctic Sweden shows local and regional

  • Twentieth century tree line changes in Swedish sub-Arctic Abstract 1 Models project that climate warming will cause the treeline to move to higher 2 elevations in alpine areas and more northerly latitudes in Arctic environments, also known as Running head.
  • The lack of 446 recent tree (>2 m) establishment and the browsing scars documented in the tree rings 447 indicated that, in addition to moth herbivory, reindeer browsing is still a controlling 448 factor at these sites (Fig. 5, Table 4).

Tables

  • Previous field studies on observed treeline shifts and their presumed causes in the Torneträsk area of sub-Arctic Sweden.
  • Browsing damage was classified visually and for five sites also by dendrochronological analysis (the values listed in brackets).
  • So as not to bias the results, Mount Nuolja (site S3), for which the two treeline sites were not randomly selected, was not included in the calculation of the mean elevational shift of the treeline in the Torneträsk area.
  • Pearson correlation coefficients and R2-values (the proportion of explained variance in documented treeline shifts) obtained by forward selection of the different variables are listed at the bottom of the table.

Figure legends

  • The Torneträsk study area in sub-Arctic Sweden.
  • The locations of the historical transects and photo points that have been revisited to study changes in the tree line ecotone are indicated.
  • The statistically-determined 30%-tree cover isoline is plotted in yellow.
  • Upper photo on the left: E. Persson, bottom left: B. Mesch; upper and bottom right: R. Van Bogaert.
  • Fig. 8. Tree (>2 m) establishment at the Torneträsk tree line versus summer (June- August) temperature and reindeer population numbers for the period 1800-2000.

Figures

  • Historical transects and photo points that have been revisited to study changes in the tree line ecotone are indicated.
  • The statistically-determined 30% tree-cover isoline is plotted in yellow.
  • Upper photo: E. Persson, lower photo: S. Johnsson.
  • Upper photo on the left: E. Persson, bottom left: B. Mesch; upper and bottom right: R. Van Bogaert. relation to disturbance (b) and summer temperature (c) for the period 1964-2006.
  • August) temperature and reindeer population numbers for the period 1800-2000.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

biblio.ugent.be
The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.
This item is the archived peer-reviewed author-version of:
A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a
minor influence of 20th century climate warming
Van Bogaert, R.; Haneca, K.; Hoogesteger, J.; Jonasson, C.; De Dapper, M.; Callaghan, T.V.
In: Journal of Biogeography, 38 (5), 907-921, 2011.
doi: 10.1111/j.1365-2699.2010.02453.x
To refer to or to cite this work, please use the citation to the published version:
Van Bogaert, R.; Haneca, K.; Hoogesteger, J.; Jonasson, C.; De Dapper, M.; Callaghan, T.V.
(2011). A century of tree line changes in sub-Arctic Sweden shows local and regional
variability and only a minor influence of 20th century climate warming. Journal of
Biogeography 38 (5), 907-921. doi: 10.1111/j.1365-2699.2010.02453.x

1
A century of tree line changes in sub-Arctic Sweden shows local and regional
variability and only a minor influence of 20
th
century climate warming
Rik Van Bogaert
1,2*
, Kristof Haneca
3
, Jan Hoogesteger
4
, Christer Jonasson
5,6
, Morgan
De Dapper
2
and Terry V Callaghan
5,7
1
Flanders Research Foundation (FWO); Egmontstraat 5, B-1000 Brussels, Belgium
2
Department of Geography, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
3
Flemish Heritage Institute, Koning Albert II-laan 19 bus 5, B-1210 Brussels, Belgium,
formerly Laboratory of Wood Technology, Ghent University Coupure Links 653, 9000
Ghent, Belgium
4
Department of Forest Sciences, University of Helsinki, PO Box 27, FI-00014 Helsinki,
Finland
5
Abisko Scientific Research Station, Royal Swedish Academy of Sciences, SE-98107
Abisko, Sweden
6
Department of Physical Geography, Uppsala University, S-75122 Uppsala, Sweden
7
Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield
S10 2TN, UK
*Corresponding author: Address: Yzerhand 85, B-9120 Beveren, Belgium.
rikvanbogaert@gmail.com
Running head: Twentieth century tree line changes in Swedish sub-Arctic

2
Abstract 1
Models project that climate warming will cause the treeline to move to higher 2
elevations in alpine areas and more northerly latitudes in Arctic environments. We 3
aimed to document changes or stability of the treeline in a sub-Arctic model area at 4
different temporal and spatial scales, and particularly to clarify the ambiguity that 5
currently exists about treeline dynamics and their causes. The study was conducted in 6
the Torneträsk area in northern Sweden where climate warmed by 2.5 ˚C between 7
1913 and 2006. Mountain birch (Betula pubescens ssp. czerepanovii) sets the alpine 8
treeline. We used repeat photography, dendrochronological analysis, field 9
observations along elevational transects and historical documents to study treeline 10
dynamics. Since 1912, only four out of eight treeline sites had advanced: on average 11
the treeline had shifted 24 m upslope (+0.2 m year
-1
assuming linear shifts). 12
Maximum treeline advance was +145 m (+1.5 m year
-1
in elevation and +2.7 m year
-1
13
in actual distance), whereas maximum retreat was 120 m downslope. Counter-14
intuitively, treeline advance was most pronounced during the cooler late 1960s and 15
1970s. Tree establishment and treeline advance were significantly correlated with 16
periods of low reindeer (Rangifer tarandus) population numbers. A decreased 17
anthropozoogenic impact since the early 20
th
century was found to be the main factor 18
shaping the current treeline ecotone and its dynamics. In addition, episodic 19
disturbances by moth outbreaks and geomorphological processes resulted in descent 20
and long-term stability of the treeline position, respectively. In contrast to what is 21
generally stated in the literature, this study shows that in a period of climate warming, 22
disturbance may not only determine when treeline advance will occur but if treeline 23
advance will occur at all. In the case of non-climatic climax treelines, such as those in 24
our study area, both climate-driven model projections of future treeline positions and 25

3
the use of the treeline position for bioclimatic monitoring should be used with caution.26
27
28
Key words: climate warming, dendrochronology, herbivory, human impact, mountain 29
birch, reindeer, sub-Arctic, Sweden, tree line, tree line causes 30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

4
Introduction 47
Mean annual temperatures have risen globally over the past century, with the most
48
pronounced and rapid changes at high elevations and latitudes (ACIA, 2005). As the
49
location of elevational and polar treelines is mainly caused by heat deficiency, in the
50
Northern Hemisphere climate warming is expected to cause treelines to advance to
51
higher elevations and more northerly latitudes (Harsch et al., 2009). Indeed, modern
52
evidence for such relocations exists and these have been explicitly or implicitly
53
related to recent climate warming (Shiyatov et al., 2007; Kullman and Öberg, 2009).
54
However, in many circumpolar and high-elevational areas the position of the treeline
55
has not changed (Masek, 2001; Holtmeier et al., 2003; Payette, 2007; Van Bogaert et
56
al., 2007) or has even retreated (Vlassova, 2002; Dalen and Hofgaard, 2005; Kullman,
57
2005; Cherosov et al., 2010).
58
Treeline heterogeneity increases from global to regional, to landscape and to local
59
scales of analysis (Callaghan et al., 2002). Moreover, the factors controlling the
60
position and structure of the treeline are highly scale-dependent and vary from place
61
to place (Sveinbjörnsson et al., 2002). Individual trees and the forest system may
62
respond differently to change; warming may increase tree growth, while at the same
63
time seedling survival may be reduced because of water stress brought about by
64
greater evapotranspiration and drying of the uppermost soil. Furthermore, the time-
65
scale of a study influences outcomes because it determines the processes and
66
responses that can be studied. There are short-term responses (defined as a year or
67
less and reflected in individual tree growth), medium-term responses (some years to a
68
few decades and reflected in changing survival rates of seedlings and altered tree
69
physiognomy) and long-term responses (several decades to centuries and reflected in
70
a general treeline advance or retreat) (Holtmeier and Broll, 2005).
71

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a treeline ecotone formed by Picea abies at elevations ranging from 1250 to 1490m was studied and the authors found that tree establishment at treeline had occurred with a 30-40yr lag after the main establishment peak at timberline.
Abstract: Questions What was the main trigger of treeline ecotone advance – rising temperature or agricultural land abandonment? Were the triggering factors of tree expansion homogeneous or did they differ between upper and lower parts of the treeline ecotone? Location Sudetes Mts., Central Europe (50° N, 15-17° E). Methods Data were gathered from the treeline ecotone formed by Picea abies at elevations ranging from 1250 to 1490 m. The study area experienced a 1 °C temperature increase over the last 100 yr and termination of cattle grazing and grass mowing in the first half of the 20th century. At 38 plots situated at lower (‘timberline’) and middle or upper (‘treeline’ and ‘outpost treeline’) parts of the treeline ecotone, the age structure of all seed origin P. abies was determined. Changes in tree cover and number of trees over the last 60–70 yr were assessed from aerial imagery. The history of agricultural land use for each plot was compiled. Finally, changes in tree establishment were modelled using climatic variables and land-use intensity. Results We found that tree establishment at treeline had occurred with a 30–40-yr lag after the main establishment peak at timberline. Whereas all treeline plots showed gradual increases in tree cover, timberline tree cover first increased, with some plots then undergoing thinning. Enhanced tree establishment was dependent mainly upon agricultural land abandonment. The effect of land-use changes was more important in the lower than in the upper part of the treeline ecotone. Increasing summer temperatures had a negative influence on seedling establishment in the last few decades. Conclusions Treeline ecotone densification was attributable to agricultural land abandonment across the entire treeline ecotone with the most important effect at timberline. More recently, seedling establishment has been limited by the effects of drought and/or absence of suitable microsites. We documented that one or two establishment pulses over 120 yr, together with enhanced growth since the 1980s, were able to trigger treeline ecotone advance.

30 citations

Journal ArticleDOI
TL;DR: In this paper , the authors quantified interannual trends in annual maximum vegetation greenness using an ensemble of vegetation indices derived from Landsat observations at 100,000 sample sites in areas without signs of recent disturbance.
Abstract: The boreal forest biome is a major component of Earth's biosphere and climate system that is projected to shift northward due to continued climate change over the coming century. Indicators of a biome shift will likely first be evident along the climatic margins of the boreal forest and include changes in vegetation productivity, mortality, and recruitment, as well as overall vegetation greenness. However, the extent to which a biome shift is already underway remains unclear because of the local nature of most field studies, sparsity of systematic ground‐based ecological monitoring, and reliance on coarse resolution satellite observations. Here, we evaluated early indicators of a boreal forest biome shift using four decades of moderate resolution (30 m) satellite observations and biogeoclimatic spatial datasets. Specifically, we quantified interannual trends in annual maximum vegetation greenness using an ensemble of vegetation indices derived from Landsat observations at 100,000 sample sites in areas without signs of recent disturbance. We found vegetation greenness increased (greened) at 38 [29, 42] % and 22 [15, 26] % of sample sites from 1985 to 2019 and 2000 to 2019, whereas vegetation greenness decreased (browned) at 13 [9, 15] % and 15 [13, 19] % of sample sites during these respective periods [95% Monte Carlo confidence intervals]. Greening was thus 3.0 [2.6, 3.5] and 1.5 [0.8, 2.0] times more common than browning and primarily occurred in cold sparsely treed areas with high soil nitrogen and moderate summer warming. Conversely, browning primarily occurred in the climatically warmest margins of both the boreal forest biome and major forest types (e.g., evergreen conifer forests), especially in densely treed areas where summers became warmer and drier. These macroecological trends reflect underlying shifts in vegetation productivity, mortality, and recruitment that are consistent with early stages of a boreal biome shift.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantified changes in alpine snowbeds and wetland vegetation during three decades and analyzed to what extent these changes are related to initial variations in snow cover duration and distance to groundwater level.
Abstract: We have quantified floristic changes in alpine snowbeds and wetland vegetation during three decades and analyzed to what extent these changes are related to initial variations in snow cover duration and distance to groundwater level. Vascular plant species richness and total plant cover were estimated along three transects in northern Norway. Three different vegetation zones were identified along the original transects: relatively dry snowbeds, wet snowbeds and wetlands. The resampling shows major changes in species richness and plant cover. In general, there was a net immigration of species and 13 new species were found. Five rare species with initial low cover were lost. In the dry and wet snowbeds, species richness and total plant cover increased, mostly because of invasion by shrubs, graminoids and herbs. A general trend was that species indicating high soil moisture were strongly reduced. In the wetland zones there were no significant floristic changes but hygrophilous species had decreased and were replaced by graminoids and shrub species with lower water requirements. These floristic changes were significantly related to snow and soil moisture conditions, important factors for rate and direction of change. Contrasting vegetation responses within very short distances demonstrate the importance of detailed knowledge of the actual microhabitats when effects of climate change in alpine habitats are considered.

30 citations

Journal ArticleDOI
TL;DR: It is shown that microbial and nutrient cycling processes shift to a slower, less C-demanding state in response to canopy defoliation, and may result in a fundamental shift in sub-arctic ecosystem processes and properties.
Abstract: Sub-arctic birch forests (Betula pubescens Ehrh. ssp. czerepanovii) periodically suffer large-scale defoliation events caused by the caterpillars of the geometrid moths Epirrita autumnata and Operophtera brumata. Despite their obvious influence on ecosystem primary productivity, little is known about how the associated reduction in belowground C allocation affects soil processes. We quantified the soil response following a natural defoliation event in sub-arctic Sweden by measuring soil respiration, nitrogen availability and ectomycorrhizal fungi (EMF) hyphal production and root tip community composition. There was a reduction in soil respiration and an accumulation of soil inorganic N in defoliated plots, symptomatic of a slowdown of soil processes. This coincided with a reduction of EMF hyphal production and a shift in the EMF community to lower autotrophic C-demanding lineages (for example, /russula-lactarius). We show that microbial and nutrient cycling processes shift to a slower, less C-demanding state in response to canopy defoliation. We speculate that, amongst other factors, a reduction in the potential of EMF biomass to immobilise excess mineral nitrogen resulted in its build-up in the soil. These defoliation events are becoming more geographically widespread with climate warming, and could result in a fundamental shift in sub-arctic ecosystem processes and properties. EMF fungi may be important in mediating the response of soil cycles to defoliation and their role merits further investigation.

30 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the often close connection between indigenous peoples and their respective territo- cation regions, and the accelerating effects of environmental change on their primary livelihoods in Arctic and sub-Arctic regions.
Abstract: Many primary livelihoods in Arctic and sub-Arctic regions experience accelerating effects of environmental change. The often close connection between indigenous peoples and their respective territo ...

27 citations


Cites background from "A century of tree line changes in s..."

  • ...Van Bogaert, R., K. Haneca, J. Hoogesteger, C. Jonasson, M. De Dapper, and T. V. Callaghan....

    [...]

  • ...Van der Wal, R. 2006....

    [...]

  • ...Their observations confirm earlier work reporting highly diverse tree line dynamics, ranging from progression to stagnation (Tømmervik et al. 2009, Van Bogaert et al. 2011, Hofgaard et al. 2013, Vuorinen et al. 2017), but interrelate these phenomena to the direct impact on their livelihood (Fig....

    [...]

  • ...Therefore, a strong interaction exists between grazing pressure and abiotic effects on plant community transition during environmental change (Van der Wal 2006, Saccone et al. 2014)....

    [...]

  • ...Such increases are rather a local regeneration of the potential forest, than a true expansion at the cost of primary open tundra habitat (Aiko and M€uller-Wille 2005, Van Bogaert et al. 2011), but might occur at strategic places where open areas would be preferred....

    [...]

References
More filters
Book
01 Jan 2005
TL;DR: The Arctic Climate Impact Assessment (ACIA) as mentioned in this paper is an assessment of the effects of climate change on the Arctic environment and its impacts on the local communities and their livelihoods.
Abstract: 1. An introduction to the Arctic Climate Impact Assessment 2. Arctic climate: past and present 3. The changing Arctic: indigenous perspectives 4. Future climate change: modeling and scenarios for the Arctic 5. Ozone and ultraviolet radiation 6. Cryosphere and hydrology 7. Arctic tundra and polar fesert ecosystems 8. Freshwater ecosystems and Fisheries 9. Marine Systems 10. Principles of conserving the Arctic's Biodiversity 11. Management and conservation of wildlife in a changing Arctic environment 12. Hunting, herding, fishing, and gathering: indigenous peoples and renewable resource use in the Arctic 13. Fisheries and aquaculture 14. Forests, land management, and agriculture 15. Human health 16. Infrastructure: buildings, support systems, and industrial facilities 17. Climate change in the context of multiple stressors and resilience 18. Summary and synthesis of the ACIA Appendix A. Chapter authors Appendix B. Biographies Appendix C. Reviewers Appendix D. Species names Appendix E. Acronyms Appendix F. Glossary.

1,775 citations

Journal ArticleDOI
TL;DR: Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.
Abstract: Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.

1,003 citations


"A century of tree line changes in s..." refers background in this paper

  • ...In contrast to Harsch et al. (2009) who concluded that the role of disturbance during recent climate warming is restricted to determining when tree line advance will occur, this study shows that disturbance and its after-effects may equally well determine ı́f tree line advance will occur at all....

    [...]

  • ...As the location of elevational and polar tree lines is mainly caused by heat deficiency, in the Northern Hemisphere climate warming is expected to cause tree lines to advance to higher elevations and more northerly latitudes (Harsch et al., 2009)....

    [...]

  • ...…widely held expectations of vegetation responses to warming, i.e. that Arctic tree lines will move northwards and elevational tree lines upslope (Harsch et al., 2009), this study documented highly varying tree line dynamics for the Torneträsk area in sub-Arctic Sweden during a period of…...

    [...]

  • ...A global study by Harsch et al. (2009) showed that only 52% of all 166 global tree line sites had advanced over the past 100 years despite documented amplified climate warming at high-elevation areas and northern latitudes (ACIA, 2005)....

    [...]

Journal ArticleDOI
TL;DR: The sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change are increasingly discussed in terms of climate change, often forgetting that climate is only one aspect of environmental variation as mentioned in this paper.
Abstract: The sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change are increasingly discussed in terms of climate change, often forgetting that climate is only one aspect of environmental variation. As treeline heterogeneity increases from global to regional and smaller scales, assessment of treeline sensitivity at the landscape and local scales requires a more complex approach than at the global scale. The time scale (short-, medium-, long-term) also plays an important role when considering treeline sensitivity. The sensitivity of the treeline to a changing environment varies among different types of treeline. Treelines controlled mainly by orographic influences are not very susceptible to the effects of warming climates. Greatest sensitivity can be expected in anthropogenic treelines after the cessation of human activity. However, tree invasion into former forested areas above the anthropogenic forest limit is controlled by site conditions, and in particular, by microclimates and soils. Apart from changes in tree physiognomy, the spontaneous advance of young growth of forest-forming tree species into present treeless areas within the treeline ecotone and beyond the tree limit is considered to be the best indicator of treeline sensitivity to environmental change. The sensitivity of climatic treelines to climate warming varies both in the local and regional topographical conditions. Furthermore, treeline history and its after-effects also play an important role. The sensitivity of treelines to changes in given factors (e.g. winter snow pack, soil moisture, temperature, evaporation, etc.) may vary among areas with differing climatic characteristics. In general, forest will not advance in a closed front but will follow sites that became more favourable to tree establishment under the changed climatic conditions.

518 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined recent tree line dynamics at six topographically different, but climatically similar, sites in south-west Yukon, Canada and found that tree line elevation and stand density increased significantly during the early to mid 20th century.
Abstract: Summary 1 Boundaries between forest and tundra ecosystems, tree lines, are expected to advance in altitude and latitude in response to climate warming. However, varied responses to 20th century warming suggest that in addition to temperature, tree line dynamics are mediated by species-specific traits and environmental conditions at landscape and local scales. 2 We examined recent tree line dynamics at six topographically different, but climatically similar, sites in south-west Yukon, Canada. Dendroecological techniques were used to reconstruct changes in density of the dominant tree species, white spruce (Picea glauca), and to construct static age distributions of willow (Salix spp.), one of two dominant shrub genera. Data were analysed to identify periods and rates of establishment and mortality and to relate these to past climate. 3 Tree line elevation and stand density increased significantly during the early to mid 20th century. However, this change was not uniform across sites. Spruce advanced rapidly on south-facing slopes and tree line rose 65–85 m in elevation. Tree line did not advance on north-facing slopes, but stand density increased 40–65%. Differences observed between aspects were due primarily to the differential presence of permafrost. Additional variability among sites was related to slope and vegetation type. Results were less conclusive for willow, but evidence for an advance was found at two sites. 4 Increases in stand density were strongly correlated with summer temperatures. The period of rapid change coincided with a 30-year period of above average temperatures, beginning in 1920. The highest correlations were obtained using a forward average of 30–50 years, supporting the hypothesis that tree line dynamics are controlled more by conditions influencing recruitment than by establishment alone. 5 The changes observed at several sites are suggestive of a threshold response and challenge the notion that tree lines respond gradually to climate warming. Overall, the results provide further evidence to support the idea that the pattern and timing of change is contingent on local, landscape, and regional-scale factors, as well as species’ biology.

334 citations


"A century of tree line changes in s..." refers result in this paper

  • ...In contrast to other studies (Danby & Hik, 2007; Kullman & Öberg, 2009), slope aspect and inclination were not correlated with elevational shifts of the tree line ecotone....

    [...]