scispace - formally typeset
Search or ask a question
Posted Content

A Collaborative Filtering Based Approach for Recommending Elective Courses

TL;DR: In this article, the authors extend the concept of collaborative filtering approach to develop a course recommendation system, which provides student an accurate prediction of the grade they may get if they choose a particular course, which will be helpful when they decide on selecting elective courses.
Abstract: In management education programmes today, students face a difficult time in choosing electives as the number of electives available are many. As the range and diversity of different elective courses available for selection have increased, course recommendation systems that help students in making choices about courses have become more relevant. In this paper we extend the concept of collaborative filtering approach to develop a course recommendation system. The proposed approach provides student an accurate prediction of the grade they may get if they choose a particular course, which will be helpful when they decide on selecting elective courses, as grade is an important parameter for a student while deciding on an elective course. We experimentally evaluate the collaborative filtering approach on a real life data set and show that the proposed system is effective in terms of accuracy.
Citations
More filters
Proceedings ArticleDOI
07 Sep 2016
TL;DR: This work investigates how the student and course academic features influence the enrollment patterns and uses these features to defineStudent and course groups at various levels of granularity, and shows how these groups can be used to design grade prediction and top-n course ranking models for neighborhood-based user collaborative filtering, matrix factorization and popularity-based ranking approaches.
Abstract: Automated course recommendation can help deliver personalized and effective college advising and degree planning. Nearest neighbor and matrix factorization based collaborative filtering approaches have been applied to student-course grade data to help students select suitable courses. However, the student-course enrollment patterns exhibit grouping structures that are tied to the student and course academic features, which lead to grade data that are not missing at random (NMAR). Existing approaches for dealing with NMAR data, such as Response-aware and context-aware matrix factorization, do not model NMAR data in terms of the user and item features and are not designed with the characteristics of grade data in mind. In this work we investigate how the student and course academic features influence the enrollment patterns and we use these features to define student and course groups at various levels of granularity. We show how these groups can be used to design grade prediction and top-n course ranking models for neighborhood-based user collaborative filtering, matrix factorization and popularity-based ranking approaches. These methods give lower grade prediction error and more accurate top-n course rankings than the other methods that do not take domain knowledge into account.

84 citations

Journal ArticleDOI
TL;DR: This evaluation showed that focusing on course-specific data improves the accuracy of grade prediction, and methods based on sparse linear and low-rank matrix factorization models that are specific to each course or student–course tuple are presented.
Abstract: The accurate estimation of students’ grades in future courses is important as it can inform the selection of next term’s courses and create personalized degree pathways to facilitate successful and timely graduation. This paper presents future course grade predictions methods based on sparse linear and low-rank matrix factorization models that are specific to each course or student–course tuple. These methods identify the predictive subsets of prior courses on a course-by-course basis and better address problems associated with the not-missing-at-random nature of the student–course historical grade data. The methods were evaluated on a dataset obtained from the University of Minnesota, for two different departments with different characteristics. This evaluation showed that focusing on course-specific data improves the accuracy of grade prediction.

67 citations

Journal ArticleDOI
TL;DR: Experimental results show that fairly good prediction is possible even with simple approaches, but very accurate prediction is hard, and the more advanced approaches can increase prediction accuracy, but only up to a point for the particular dataset considered.
Abstract: Student retention and timely graduation are enduring challenges in higher education. With the rapidly expanding collection and availability of learning data and related analytics, student performance can be accurately monitored, and possibly predicted ahead of time, thus, enabling early warning and degree planning “expert systems” to provide disciplined decision support to counselors, advisors, and educators. Previous work in educational data mining has explored matrix factorization techniques for grade prediction, albeit without taking contextual information into account. Temporal information should be informative as it distinguishes between the different class offerings and indirectly captures student experience as well. To exploit temporal and/or other kinds of context, we develop three approaches under the framework of collaborative filtering (CF). Two of the proposed approaches build upon coupled matrix factorization with a shared latent matrix factor. The third utilizes tensor factorization to model grades and their context, without introducing a new mode per context dimension as is common in the CF literature. The latent factors obtained can be used to predict grades and context, if desired. We evaluate these approaches on grade data obtained from the University of Minnesota. Experimental results show that fairly good prediction is possible even with simple approaches, but very accurate prediction is hard. The more advanced approaches can increase prediction accuracy, but only up to a point for the particular dataset considered.

49 citations

Journal ArticleDOI
TL;DR: Experiments with real‐world data show the accuracy of the ARM in recommendations and improvements in the dropout rate, and Hawkes point process is improved to model the motivate and demotivate effect of score for future learning.
Abstract: Massive Open Online Course (MOOC) has developed rapidly in recent years. However, the low satisfaction and the feelings of loneliness tend to cause more dropouts. A solution called Adaptive Recommendation for MOOC (ARM) is proposed aiming at the problem. Traditional MOOC recommendations are usually on the feature of interest. Among the recorded MOOC data, new recommendation features are selected for better balance on satisfaction. ARM trades off features adaptively according to the learner's requirement of satisfaction. Collaborative Filtering provides explicit information of similar learners and supports Collaborative Learning for less loneliness. ARM creatively combines Collaborative Filtering and time series to improve the recommendation accuracy. Specifically, Hawkes point process is improved to model the motivate and demotivate effect of score for future learning. Experiments with real‐world data show the accuracy of the ARM in recommendations and improvements in the dropout rate.

24 citations

Posted Content
TL;DR: A factorization-based approach called Matrix Factorization with Temporal Course-wise Influence that incorporates course-wise influence effects and temporal effects for grade prediction that outperforms several baseline approaches and infer meaningful patterns between pairs of courses within academic programs.
Abstract: There is a critical need to develop new educational technology applications that analyze the data collected by universities to ensure that students graduate in a timely fashion (4 to 6 years); and they are well prepared for jobs in their respective fields of study. In this paper, we present a novel approach for analyzing historical educational records from a large, public university to perform next-term grade prediction; i.e., to estimate the grades that a student will get in a course that he/she will enroll in the next term. Accurate next-term grade prediction holds the promise for better student degree planning, personalized advising and automated interventions to ensure that students stay on track in their chosen degree program and graduate on time. We present a factorization-based approach called Matrix Factorization with Temporal Course-wise Influence that incorporates course-wise influence effects and temporal effects for grade prediction. In this model, students and courses are represented in a latent "knowledge" space. The grade of a student on a course is modeled as the similarity of their latent representation in the "knowledge" space. Course-wise influence is considered as an additional factor in the grade prediction. Our experimental results show that the proposed method outperforms several baseline approaches and infer meaningful patterns between pairs of courses within academic programs.

22 citations

References
More filters
Book
15 Oct 1992
TL;DR: A complete guide to the C4.5 system as implemented in C for the UNIX environment, which starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting.
Abstract: From the Publisher: Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available on a 3.5-inch floppy diskette for a Sun workstation. C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties. The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies. This book and software should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.

21,674 citations

Proceedings ArticleDOI
01 Apr 2001
TL;DR: This paper analyzes item-based collaborative ltering techniques and suggests that item- based algorithms provide dramatically better performance than user-based algorithms, while at the same time providing better quality than the best available userbased algorithms.
Abstract: Recommender systems apply knowledge discovery techniques to the problem of making personalized recommendations for information, products or services during a live interaction. These systems, especially the k-nearest neighbor collaborative ltering based ones, are achieving widespread success on the Web. The tremendous growth in the amount of available information and the number of visitors to Web sites in recent years poses some key challenges for recommender systems. These are: producing high quality recommendations, performing many recommendations per second for millions of users and items and achieving high coverage in the face of data sparsity. In traditional collaborative ltering systems the amount of work increases with the number of participants in the system. New recommender system technologies are needed that can quickly produce high quality recommendations, even for very large-scale problems. To address these issues we have explored item-based collaborative ltering techniques. Item-based techniques rst analyze the user-item matrix to identify relationships between di erent items, and then use these relationships to indirectly compute recommendations for users. In this paper we analyze di erent item-based recommendation generation algorithms. We look into di erent techniques for computing item-item similarities (e.g., item-item correlation vs. cosine similarities between item vectors) and di erent techniques for obtaining recommendations from them (e.g., weighted sum vs. regression model). Finally, we experimentally evaluate our results and compare them to the basic k-nearest neighbor approach. Our experiments suggest that item-based algorithms provide dramatically better performance than user-based algorithms, while at the same time providing better quality than the best available userbased algorithms.

8,634 citations

Proceedings ArticleDOI
22 Oct 1994
TL;DR: GroupLens is a system for collaborative filtering of netnews, to help people find articles they will like in the huge stream of available articles, and protect their privacy by entering ratings under pseudonyms, without reducing the effectiveness of the score prediction.
Abstract: Collaborative filters help people make choices based on the opinions of other people. GroupLens is a system for collaborative filtering of netnews, to help people find articles they will like in the huge stream of available articles. News reader clients display predicted scores and make it easy for users to rate articles after they read them. Rating servers, called Better Bit Bureaus, gather and disseminate the ratings. The rating servers predict scores based on the heuristic that people who agreed in the past will probably agree again. Users can protect their privacy by entering ratings under pseudonyms, without reducing the effectiveness of the score prediction. The entire architecture is open: alternative software for news clients and Better Bit Bureaus can be developed independently and can interoperate with the components we have developed.

5,644 citations

Posted Content
TL;DR: In this article, the authors compare the predictive accuracy of various methods in a set of representative problem domains, including correlation coefficients, vector-based similarity calculations, and statistical Bayesian methods.
Abstract: Collaborative filtering or recommender systems use a database about user preferences to predict additional topics or products a new user might like. In this paper we describe several algorithms designed for this task, including techniques based on correlation coefficients, vector-based similarity calculations, and statistical Bayesian methods. We compare the predictive accuracy of the various methods in a set of representative problem domains. We use two basic classes of evaluation metrics. The first characterizes accuracy over a set of individual predictions in terms of average absolute deviation. The second estimates the utility of a ranked list of suggested items. This metric uses an estimate of the probability that a user will see a recommendation in an ordered list. Experiments were run for datasets associated with 3 application areas, 4 experimental protocols, and the 2 evaluation metrics for the various algorithms. Results indicate that for a wide range of conditions, Bayesian networks with decision trees at each node and correlation methods outperform Bayesian-clustering and vector-similarity methods. Between correlation and Bayesian networks, the preferred method depends on the nature of the dataset, nature of the application (ranked versus one-by-one presentation), and the availability of votes with which to make predictions. Other considerations include the size of database, speed of predictions, and learning time.

4,883 citations

Journal Article
TL;DR: This work compares three common approaches to solving the recommendation problem: traditional collaborative filtering, cluster models, and search-based methods, and their algorithm, which is called item-to-item collaborative filtering.
Abstract: Recommendation algorithms are best known for their use on e-commerce Web sites, where they use input about a customer's interests to generate a list of recommended items. Many applications use only the items that customers purchase and explicitly rate to represent their interests, but they can also use other attributes, including items viewed, demographic data, subject interests, and favorite artists. At Amazon.com, we use recommendation algorithms to personalize the online store for each customer. The store radically changes based on customer interests, showing programming titles to a software engineer and baby toys to a new mother. There are three common approaches to solving the recommendation problem: traditional collaborative filtering, cluster models, and search-based methods. Here, we compare these methods with our algorithm, which we call item-to-item collaborative filtering. Unlike traditional collaborative filtering, our algorithm's online computation scales independently of the number of customers and number of items in the product catalog. Our algorithm produces recommendations in real-time, scales to massive data sets, and generates high quality recommendations.

4,788 citations